
Simulink® Verification and Validation™

User’s Guide

R2013a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Verification and Validation™ User’s Guide
© COPYRIGHT 2004–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 2004 First printing New for Version 1.0 (Release 14)
October 2004 Online only Revised for Version 1.0.1 (Release 14SP1)
March 2005 Online only Revised for Version 1.0.2 (Release 14SP2)
April 2005 Second printing Revised for Version 1.1 (Web release)
September 2005 Online only Revised for Version 1.1.1 (Release 14SP3)
March 2006 Online only Revised for Version 1.1.2 (Release 2006a)
September 2006 Online only Revised for Version 2.0 (Release 2006b)
March 2007 Online only Revised for Version 2.1 (Release 2007a)
September 2007 Online only Revised for Version 2.2 (Release 2007b)
March 2008 Online only Revised for Version 2.3 (Release 2008a)
October 2008 Online only Revised for Version 2.4 (Release 2008b)
March 2009 Online only Revised for Version 2.5 (Release 2009a)
September 2009 Online only Revised for Version 2.6 (Release 2009b)
March 2010 Online only Revised for Version 2.7 (Release 2010a)
September 2010 Online only Revised for Version 3.0 (Release 2010b)
April 2011 Online only Revised for Version 3.1 (Release 2011a)
September 2011 Online only Revised for Version 3.2 (Release 2011b)
March 2012 Online only Revised for Version 3.3 (Release 2012a)
September 2012 Online only Revised for Version 3.4 (Release 2012b)
March 2013 Online only Revised for Version 3.5 (Release 2013a)

Contents

Getting Started

1
Product Description . 1-2
Key Features . 1-2

System Requirements . 1-3
Operating System Requirements . 1-3
Product Requirements . 1-3

Requirements Traceability

Links Between Models and Requirements

2
Overview of the Requirements Management Interface
(RMI) . 2-3

Requirements Links . 2-4

Requirements Link Storage . 2-5

Supported Requirements Document Types 2-6

Supported Model Objects for Requirements Linking . . 2-9

Selection-Based Linking . 2-10

Link to Requirements Document Using Selection-Based
Linking . 2-11

v

Configure RMI for IBM Rational DOORS or Microsoft
ActiveX Navigation . 2-12

The Requirements Dialog Box . 2-13
Create Requirements Using the Requirements Dialog
Box . 2-13

Requirements Tab . 2-14
Document Index Tab . 2-15

The Requirements Settings Dialog Box 2-16
Selection Linking Tab . 2-16

Link Model Objects . 2-18
Link Objects in the Same Model . 2-18
Link Objects in Different Models . 2-18
Link from External Applications . 2-19

Link Multiple Model Objects to a Requirements
Document . 2-20
Link Multiple Model Objects to a Requirement Document
Using a Simulink DocBlock . 2-22

Link to Requirements in Microsoft Word Documents . . 2-25
Create Bookmarks in a Microsoft Word Requirements
Document . 2-25

Open the Example Model and Associated Requirements
Document . 2-27

Create a Link from a Model Object to a Microsoft Word
Requirements Document . 2-28

Link to Requirements in IBM Rational DOORS
Databases . 2-32

Link to Requirements in Microsoft Excel Workbooks . . 2-34
Navigate from a Model Object to Requirements in a
Microsoft Excel Workbook . 2-34

Create Requirements Links to the Workbook 2-34
Link Multiple Model Objects to a Microsoft Excel
Workbook . 2-35

Change Requirements Links . 2-36

vi Contents

Link to Requirements in MuPAD Notebooks 2-39

Create Requirements Reports . 2-42

Link to Requirements Modeled in Simulink 2-44

Requirements Linking with Simulink Annotations . . . 2-52

Link Signal Builder Blocks to Requirements
Documents . 2-53

Link Signal Builder Blocks to Model Objects 2-55

How Is Requirements Link Information Stored?

3
External Storage . 3-2

Guidelines for External Storage of Requirements
Links . 3-3

Specify Storage for Requirements Links 3-4

Save Requirements Links in External Storage 3-5

Load Requirements Links from External Storage 3-6

Move Internally Stored Requirements Links to External
Storage . 3-7

Move Externally Stored Requirements Links to the
Model File . 3-8

vii

Reviewing Requirements

4
Highlight Model Objects with Requirements 4-2
Highlight Model Objects with Requirements Using Model
Editor . 4-2

Highlight Model Objects with Requirements Using Model
Explorer . 4-3

Navigate to Requirements from Model 4-5
Navigate from Model Object . 4-5
Navigate from System Requirements Block 4-5

Create and Customize Requirements Report 4-7
Create Default Requirements Report 4-7
Report for Requirements in Model Blocks 4-15
Customize Requirements Report . 4-17
Generate Requirements Reports Using Simulink 4-23

Filter Requirements with User Tags 4-25
User Tags and Requirements Filtering 4-25
Apply a User Tag to a Requirement 4-25
Filter, Highlight, and Report with User Tags 4-27
Apply User Tags During Selection-Based Linking 4-28
Configure Requirements Filtering . 4-30

Requirements Links Maintenance

5
Validation of Requirements Links 5-2
When to Check Links in a Requirements Document 5-2
How the rmi Function Checks a Requirements
Document . 5-3

Validate Requirements Links in a Model 5-4
Check Requirements Links with the Model Advisor 5-4
Fix Invalid Requirements Links Detected by the Model
Advisor . 5-7

viii Contents

Validate Requirements Links in a Requirements
Document . 5-11
Check Links in a Requirements Document 5-11
When Multiple Objects Have Links to the Same
Requirement . 5-12

Fix Invalid Links in a Requirements Document 5-13

Document Path Storage . 5-15
Relative (Partial) Path Example . 5-16
Relative (No) Path Example . 5-16
Absolute Path Example . 5-16

Delete Requirements Links from Simulink Objects . . . 5-17
Delete a Single Link from a Simulink Object 5-17
Delete All Links from a Simulink Object 5-17
Delete All Links from Multiple Simulink Objects 5-18

Requirements Links for Library Blocks and Reference
Blocks . 5-19
Introduction to Library Blocks and Reference Blocks 5-19
Library Blocks and Requirements . 5-19
Copy Library Blocks with Requirements 5-20
Manage Requirements on Reference Blocks 5-20
Manage Requirements Inside Reference Blocks 5-21
Links from Requirements to Library Blocks 5-24

IBM Rational DOORS Surrogate Module
Synchronization

6
Synchronization with DOORS Surrogate Modules 6-2

Advantages of Synchronizing Your Model with a
Surrogate Module . 6-4

Synchronize a Simulink Model to Create a Surrogate
Module . 6-5

ix

Create Links Between Surrogate Module and Formal
Module in a DOORS Database . 6-7

Customize DOORS Synchronization 6-8
DOORS Synchronization Settings . 6-8
Resynchronize a Model with a Different Surrogate
Module . 6-10

Customize the Level of Detail in Synchronization 6-11
Resynchronize to Include All Simulink Objects 6-12

Resynchronize DOORS Surrogate Module to Reflect
Model Changes . 6-16

Navigate with the Surrogate Module 6-18
Navigate Between Requirements and the Surrogate Module
in the DOORS Database . 6-18

Navigate Between DOORS Requirements and the Simulink
Module via the Surrogate Module 6-19

Navigation from Requirements Documents

7
IBM Rational DOORS . 7-2
Why Add Navigation Objects to DOORS Requirements? . . 7-2
Configure Requirements Management Interface for DOORS
Software . 7-3

Enable Linking from DOORS Databases to Simulink
Objects . 7-4

Insert Navigation Objects into DOORS Requirements 7-6
Customize DOORS Navigation Objects 7-7
Navigate Between DOORS Requirement and Model
Object . 7-9

Diagnose and Fix DXL Errors . 7-10

Microsoft Office . 7-11
Why Add Navigation Objects to Microsoft Office
Requirements? . 7-11

Enable Linking from Microsoft Office Documents to
Simulink Objects . 7-11

x Contents

Insert Navigation Objects in Microsoft Office Requirements
Documents . 7-13

Customize Microsoft Office Navigation Objects 7-14
Navigate Between Microsoft Word Requirement and
Model . 7-15

Navigate with Objects Created Using ActiveX in Microsoft
Office 2007 and 2010 . 7-16

Custom Types of Requirements Documents

8
Why Create a Custom Link Type? 8-2

Implement Custom Link Types . 8-3

Custom Link Type Functions . 8-4

Links and Link Types . 8-5

Link Type Properties . 8-6

Custom Link Type Registration . 8-10

Create a Custom Requirements Link Type 8-11
Create a Document Index . 8-19

Custom Link Type Synchronization 8-21

Navigate to Simulink Objects from External
Documents . 8-22
Provide Unique Object Identifiers . 8-22
Use the rmiobjnavigate Function 8-22
Determine the Navigation Command 8-22
Use the ActiveX Navigation Control 8-23
Typical Code Sequence for Establishing Navigation
Controls . 8-23

xi

Requirements Information in Generated Code

9
How Requirements Information Is Included in
Generated Code . 9-2

Generate Code for Models with Requirements Links . . 9-3

Model Component Testing

Overview of Component Verification

10
Component Verification . 10-2
Component Verification Approaches 10-2
Simulink Verification and Validation Tools for Component
Verification . 10-2

Basic Approach to Component Verification 10-4
Workflow for Component Verification 10-4
Verify a Component Independently of the Container
Model . 10-6

Verify a Model Block in the Context of the Container
Model . 10-7

Functions for Component Verification 10-9

Verifying Generated Code for a Component

11
Verify Generated Code for a Component 11-2
About the Example Model . 11-2
Prepare the Component for Verification 11-4
Create and Log Test Cases . 11-6

xii Contents

Merge Test Case Data . 11-7
Record Coverage for Component . 11-8
Execute Component in Simulation Mode 11-9
Execute Component in Software-in-the-Loop (SIL)
Mode . 11-9

Signal Monitoring with Model Verification
Blocks

Using Model Verification Blocks

12
Model Verification Blocks and the Verification
Manager . 12-2

Use Check Static Lower Bound Block to Check for
Out-of-Bounds Signal . 12-3

Linear System Modeling Blocks in Simulink Control
Design . 12-6

Constructing Simulation Tests Using the
Verification Manager

13
What Is the Verification Manager? 13-2

Construct Simulation Tests Using the Verification
Manager . 13-3
View Model Verification Blocks . 13-3
Enable and Disable Model Verification Blocks in a
Model . 13-9

Enable and Disable Model Verification Blocks in a
Subsystem . 13-13

xiii

Use Check Static Lower Bound Block to Check for
Out-of-Bounds Signal . 13-17

Link Test Cases to Requirements Documents Using the
Verification Manager . 13-21

Model Coverage Analysis

Model Coverage Definition

14
Model Coverage . 14-2

Types of Model Coverage . 14-3
Cyclomatic Complexity . 14-3
Decision Coverage (DC) . 14-4
Condition Coverage (CC) . 14-4
Modified Condition/Decision Coverage (MCDC) 14-4
Lookup Table Coverage . 14-6
Saturate on Integer Overflow Coverage 14-6
Signal Range Coverage . 14-7
Signal Size Coverage . 14-7
Simulink Design Verifier Coverage 14-8

Simulink Optimizations and Model Coverage 14-10
Inline parameters . 14-10
Block reduction . 14-10
Conditional input branch execution 14-11

Model Objects That Receive Model Coverage

15
Model Objects That Receive Coverage 15-2
Abs . 15-5
Bias . 15-6
Combinatorial Logic . 15-7
Data Type Conversion . 15-7

xiv Contents

Dead Zone . 15-8
Direct Lookup Table (n-D) . 15-9
Discrete Filter . 15-10
Discrete FIR Filter . 15-10
Discrete-Time Integrator . 15-10
Discrete Transfer Fcn . 15-12
Dot Product . 15-12
Enabled Subsystem . 15-13
Enabled and Triggered Subsystem 15-13
Fcn . 15-15
For Iterator, For Iterator Subsystem 15-15
Gain . 15-16
If, If Action Subsystem . 15-16
Interpolation Using Prelookup . 15-17
Library-Linked Objects . 15-18
Logical Operator . 15-18
1-D Lookup Table . 15-19
2-D Lookup Table . 15-19
n-D Lookup Table . 15-20
Math Function . 15-21
MATLAB Function . 15-22
MinMax . 15-22
Model . 15-23
Multiport Switch . 15-23
PID Controller, PID Controller (2 DOF) 15-24
Product . 15-24
Proof Assumption . 15-25
Proof Objective . 15-25
Rate Limiter . 15-26
Relay . 15-26
Saturation . 15-27
Saturation Dynamic . 15-28
Simulink Design Verifier Functions in MATLAB Function
Blocks . 15-28

Sqrt, Signed Sqrt, Reciprocal Sqrt . 15-29
Sum, Add, Subtract, Sum of Elements 15-29
Switch . 15-30
SwitchCase, SwitchCase Action Subsystem 15-30
Test Condition . 15-31
Test Objective . 15-31
Triggered Models . 15-32
Triggered Subsystem . 15-33
Truth Table . 15-34
Unary Minus . 15-34

xv

Weighted Sample Time Math . 15-34
While Iterator, While Iterator Subsystem 15-35

Model Objects That Do Not Receive Coverage 15-36

Setting Model Coverage Options

16
Specify Model Coverage Options . 16-2
Coverage Tab . 16-2
Results Tab . 16-6
Reporting Tab . 16-8
Options Tab . 16-13
Filter Tab . 16-16

Coverage Collection During Simulation

17
Model Coverage Collection Workflow 17-2

Create and Run Test Cases . 17-3

View Coverage Results in a Model 17-5
Overview of Model Coverage Highlighting 17-5
Enable Coverage Highlighting . 17-6
Model Coverage Coloring . 17-6
Coverage Display Window . 17-10

Model Coverage for Multiple Instances of a Referenced
Model . 17-11
About Coverage for Model Blocks . 17-11
Record Coverage for Multiple Instances of a Referenced
Model . 17-11

xvi Contents

Model Coverage for MATLAB Functions 17-22
About Model Coverage for MATLAB Functions 17-22
Types of Model Coverage for MATLAB Functions 17-22
How to Collect Coverage for MATLAB Functions 17-24
Examples: Model Coverage for MATLAB Functions 17-25

Model Coverage for Stateflow Charts 17-40
How Model Coverage Reports Work for Stateflow
Charts . 17-40

Specify Coverage Report Settings . 17-41
Cyclomatic Complexity . 17-41
Decision Coverage . 17-42
Condition Coverage . 17-46
MCDC Coverage . 17-47
Simulink Design Verifier Coverage 17-47
Model Coverage Reports for Stateflow Charts 17-49
Model Coverage for Stateflow State Transition Tables . . . 17-59
Model Coverage for Stateflow Atomic Subcharts 17-60
Model Coverage for Stateflow Truth Tables 17-63
Colored Stateflow Chart Coverage Display 17-68

Results Review

18
Types of Coverage Reports . 18-2
Model Summary Report . 18-3
Model Reference Coverage Report . 18-4
External MATLAB File Coverage Report 18-4
Subsystem Coverage Report . 18-8

Top-Level Model Coverage Report 18-11
Coverage Summary . 18-11
Details . 18-13
Cyclomatic Complexity . 18-21
Decisions Analyzed . 18-23
Conditions Analyzed . 18-24
MCDC Analysis . 18-25
Cumulative Coverage . 18-26
N-Dimensional Lookup Table . 18-29
Block Reduction . 18-35

xvii

Saturate on Integer Overflow Analysis 18-36
Signal Range Analysis . 18-37
Signal Size Coverage for Variable-Dimension Signals 18-39
Simulink Design Verifier Coverage 18-40

Excluding Model Objects From Coverage

19
Coverage Filtering . 19-2
What Is Coverage Filtering? . 19-2
When to Use Coverage Filtering . 19-2

Coverage Filter Rules and Files . 19-3
What Is a Coverage Filter Rule? . 19-3
What Is a Coverage Filter File? . 19-3

Model Objects That You Can Exclude From
Coverage . 19-4

Create, Edit, and View Coverage Filter Rules for a
Simulink Model . 19-5
Create and Edit Coverage Filter Rules 19-5
Save Coverage Filter to File . 19-7
Attach Coverage Filter File to Model 19-8
View Coverage Filter Rules in Your Model 19-8
Remove Coverage Filter Rules . 19-9

Manage Coverage Filter Rules Using the Coverage
Filter Viewer . 19-10

Filter Model Objects to Refine Coverage Results 19-12
About the Example Model . 19-12
Simulate Example Model and Review Coverage 19-12
Filter a Stateflow Transition . 19-13
Filter a Stateflow Event . 19-15
Filter Library Reference Blocks . 19-19
Filter a Subsystem . 19-20
Filter a Specific Block . 19-21

xviii Contents

Automating Model Coverage Tasks

20
Commands for Automating Model Coverage Tasks 20-2

Create Tests with cvtest . 20-3

Run Tests with cvsim . 20-6

Retrieve Coverage Details from Results 20-8

Obtain Cumulative Coverage for Reusable Subsystems
and Stateflow Constructs . 20-9

Create HTML Reports with cvhtml 20-12

Save Test Runs to a File with cvsave 20-13

Load Stored Coverage Test Results with cvload 20-14
cvload Special Considerations . 20-14

Use Coverage Commands in a Script 20-15

Checking Systems with the Model Advisor

Checking Systems Interactively

21
About Checking Systems Interactively 21-2

Limit the Scope of Model Advisor Analysis 21-3
What Is a Model Advisor Exclusion? 21-3
Model Advisor Exclusion Files . 21-4
Create Model Advisor Exclusions . 21-5
Review Model Advisor Exclusions . 21-7

xix

Manage Exclusions . 21-8

Limit Scope of Model Advisor Analysis By Excluding
Gain and Outport Blocks . 21-12

Check Systems Programmatically

22
Overview . 22-2

Workflow for Checking Systems Programmatically . . . 22-3

Finding Check IDs . 22-4

Create a Function for Checking Multiple Systems 22-6

Check Multiple Systems in Parallel 22-8

Create a Function for Checking Multiple Systems in
Parallel . 22-9

Archive and View Results . 22-11
Archive Results . 22-11
View Results in Command Window 22-11
View Results in Model Advisor Command-Line Summary
Report . 22-13

View Results in Model Advisor GUI 22-14
View Model Advisor Report . 22-14

Archive and View Model Advisor Run Results 22-15

xx Contents

Customizing the Model Advisor

Overview of Customizing the Model Advisor

23
Model Advisor Customization . 23-2

Create Custom Configurations . 23-4
Create Configurations by Organizing Checks and Folders
Workflow . 23-4

Create Procedural-Based Configurations 23-5

Requirements for Customizing the Model Advisor 23-6

Authoring Custom Checks

24
Author Checks Workflow . 24-2

Customization File Overview . 24-3

Quick Start Examples . 24-6
Add Customized Check to By Product Folder 24-6
Create Customized Pass/Fail Check 24-8
Create Customized Pass/Fail Check with Fix Action 24-12

Register Checks and Process Callbacks 24-18
Create sl_customization Function . 24-18
Register Checks and Process Callbacks 24-18
Define Startup and Post-Execution Actions Using Process
Callback Functions . 24-20

Define Custom Checks . 24-23
About Custom Checks . 24-23
Contents of Check Definitions . 24-23
Display and Enable Checks . 24-25

xxi

Define Where Custom Checks Appear 24-26
Check Definition Function . 24-27
Define Check Input Parameters . 24-28
Define Model Advisor Result Explorer Views 24-30
Define Check Actions . 24-31

Create Callback Functions and Results 24-34
About Callback Functions . 24-34
Common Utilities for Authoring Checks 24-35
Simple Check Callback Function . 24-35
Detailed Check Callback Function . 24-43
Check Callback Function with Hyperlinked Results 24-45
Action Callback Function . 24-49
Format Model Advisor Results . 24-50

Exclude Blocks From Custom Checks 24-55

Create Custom Configurations by Organizing
Checks and Folders

25
Create Custom Configurations Basics 25-2
About Custom Configurations . 25-2
Create Custom Configurations Workflow 25-2
Using the Model Advisor Configuration Editor Versus
Customization File . 25-2

Organize Checks and Folders Using the Model Advisor
Configuration Editor . 25-3
Overview of the Model Advisor Configuration Editor 25-3
Start the Model Advisor Configuration Editor 25-8
Organize Checks and Folders Using the Model Advisor
Configuration Editor . 25-9

Organize Checks and Folders Within a Customization
File . 25-11
Customization File Overview . 25-11
Register Tasks and Folders . 25-12
Define Custom Tasks . 25-14

xxii Contents

Define Custom Folders . 25-17
Customization Example . 25-19

Verify and Use Custom Configurations 25-21
Update the Environment to Include Your sl_customization
File . 25-21

Verify Custom Configurations . 25-21

Create Procedural-Based Model Advisor
Configurations

26
Overview of Procedural-Based Model Advisor
Configurations . 26-2
Create Procedural-Based Configurations 26-2

Create Procedures . 26-3
What Is a Procedure? . 26-3
Create Procedures Using the Procedures API 26-3
Define Procedures . 26-3

Create a Procedural-Based Configuration 26-7

Deploy Custom Configurations

27
Overview of Deploying Custom Configurations 27-2
About Deploying Custom Configurations 27-2
Deploying Custom Configurations Workflow 27-2

How to Deploy Custom Configurations 27-3

Manually Load and Set the Default Configuration 27-4

xxiii

Automatically Load and Set the Default
Configuration . 27-5

Index

xxiv Contents

1

Getting Started

• “Product Description” on page 1-2

• “System Requirements” on page 1-3

1 Getting Started

Product Description
Verify models and generated code

Simulink® Verification and Validation™ automates requirements tracing,
modeling standards compliance checking, and model coverage analysis.

You can create detailed requirements traceability reports, author your
own modeling style checks, and develop check configurations to share with
engineering teams. Requirements documentation can be linked to models,
test cases, and generated code. You can generate harness models for testing
model components and code, and use model coverage analysis to ensure that
models have been thoroughly tested.

Simulink Verification and Validation provides modeling standards checks
for the DO-178B and IEC 61508 industry standards. Additional support is
available through DO Qualification Kit and IEC Certification Kit.

Key Features

• Compliance checking for MAAB style guidelines and high-integrity system
design guidelines (DO-178B and IEC-61508)

• Model Advisor Configuration Editor, including custom check authoring

• Requirements Management Interface for traceability of model objects, code,
and tests to requirements documents

• Automatic test-harness generation for subsystems

• Component testing via simulation, software-in-the-loop (SIL), and
processor-in-the-loop (PIL)

• Programmable scripting interface for automating compliance checking,
requirements traceability analysis, and component testing

1-2

http://www.mathworks.com/discovery/requirements-traceability.html
http://www.mathworks.com/aerospace-defense/standards/do-178b.html
http://www.mathworks.com/industrial-automation-machinery/standards/iec-61508.html
http://www.mathworks.com/products/do-178/
http://www.mathworks.com/products/iec-61508/

System Requirements

System Requirements

In this section...

“Operating System Requirements” on page 1-3

“Product Requirements” on page 1-3

Operating System Requirements
The Simulink Verification and Validation software works with the following
operating systems:

• Microsoft® Windows® XP, Windows Vista™, and Windows 7

• UNIX® systems (Requirements linking to HTML and TXT documents only)

Product Requirements
The Simulink Verification and Validation software requires the following
MathWorks® products:

• MATLAB®

• Simulink

If you want to use the Requirements Management Interface with Stateflow®

charts, the Simulink Verification and Validation software requires the
following MathWorks product:

• Stateflow

The Requirements Management Interface in the Simulink Verification and
Validation software allows you to associate requirements with Simulink
models and Stateflow charts. The software supports the following applications
for documenting requirements:

• Microsoft Word 2003 or later

• Microsoft Excel® 2003 or later

• IBM® Rational® DOORS® 6.0 or later

1-3

1 Getting Started

• Adobe® PDF

1-4

Requirements Traceability

• Chapter 2, “Links Between Models and Requirements”

• Chapter 3, “How Is Requirements Link Information Stored?”

• Chapter 4, “Reviewing Requirements”

• Chapter 5, “Requirements Links Maintenance”

• Chapter 6, “IBM Rational DOORS Surrogate Module
Synchronization”

• Chapter 7, “Navigation from Requirements Documents”

• Chapter 8, “Custom Types of Requirements Documents”

• Chapter 9, “Requirements Information in Generated Code”

2

Links Between Models and
Requirements

• “Overview of the Requirements Management Interface (RMI)” on page 2-3

• “Requirements Links” on page 2-4

• “Requirements Link Storage” on page 2-5

• “Supported Requirements Document Types” on page 2-6

• “Supported Model Objects for Requirements Linking” on page 2-9

• “Selection-Based Linking” on page 2-10

• “Link to Requirements Document Using Selection-Based Linking” on page
2-11

• “Configure RMI for IBM Rational DOORS or Microsoft ActiveX Navigation”
on page 2-12

• “The Requirements Dialog Box” on page 2-13

• “The Requirements Settings Dialog Box” on page 2-16

• “Link Model Objects” on page 2-18

• “Link Multiple Model Objects to a Requirements Document” on page 2-20

• “Link to Requirements in Microsoft Word Documents” on page 2-25

• “Link to Requirements in IBM Rational DOORS Databases” on page 2-32

• “Link to Requirements in Microsoft® Excel® Workbooks” on page 2-34

• “Link to Requirements in MuPAD Notebooks” on page 2-39

• “Create Requirements Reports” on page 2-42

2 Links Between Models and Requirements

• “Link to Requirements Modeled in Simulink” on page 2-44

• “Requirements Linking with Simulink Annotations” on page 2-52

• “Link Signal Builder Blocks to Requirements Documents” on page 2-53

• “Link Signal Builder Blocks to Model Objects” on page 2-55

2-2

Overview of the Requirements Management Interface (RMI)

Overview of the Requirements Management Interface
(RMI)

If you want to link Simulink and Stateflow objects to requirements, including
external documents, verification objects, or tests, use the RMI to:

• Associate Simulink and Stateflow objects with requirements.

• Create links between Simulink and Stateflow model objects.

• Navigate from a Simulink or Stateflow object to requirements.

• Navigate from an embedded link in a requirements document to the
corresponding Simulink or Stateflow object.

• Review requirements links in your model using highlighting and tags that
you define.

• Create reports for your Simulink model that show which objects link to
which requirements.

2-3

2 Links Between Models and Requirements

Requirements Links
When you want to navigate from a Simulink model to a location inside a
requirements document, requirements links are inserted into the model.

Requirements links have the following attributes:

• A description of up to 255 characters.

• A requirements document path name, such as a Microsoft Word file or
a module in an IBM Rational DOORS database. (The RMI supports
several built-in document formats. You can also register custom types of
requirements documents. See “Supported Requirements Document Types”
on page 2-6.)

• A designated location inside the requirements document, such as:

- Bookmark

- Anchor

- ID

- Page number

- Line number

- Cell range

- Link target

- Tags that you define

2-4

Requirements Link Storage

Requirements Link Storage
When you create links from a model to external requirements, by default, the
Requirements Management Interface (RMI) stores the information about the
links internally in the model file. When links are stored with the model, each
time you change requirements links, the time stamp and version number
of the model changes.

If you do not want to modify your model when creating or modifying
requirements links, use external storage for requirements links. External
storage is a mechanism for saving information about linked requirements in a
file that is separate from the model file. The RMI saves information about the
requirements links in a file that, by default, is named model_name.req and is
saved in the same folder as the model.

When you use external storage for requirements links, no changes are made
to the model file when you modify the requirements links.

2-5

2 Links Between Models and Requirements

Supported Requirements Document Types
The following table lists the supported requirements document types. For
each document type, it lists the options for requirements locations within
the document.

Requirements
Document
Type

Location Options

Microsoft
Word
document

• Named item— A bookmark name. The RMI links to the
location of that bookmark in the document. The most
stable location identifier because the link is maintained
when the target content is modified or moved.

• Search text — A search string. The RMI links to the
first occurrence of that string in the document. This
search is not case sensitive.

• Page/item number— A page number. The RMI links to
the top of the specified page.

Microsoft
Excel
workbook

• Named item — A named range of cells. The RMI links
to that named item in the workbook. The most stable
location identifier because the link is maintained when
the target content is modified or moved.

• Search text — A search string. The RMI links to the
first occurrence of that string in the workbook. This
search is not case sensitive.

• Sheet range— A cell location in a workbook:

- Cell number (A1, C13)

- Range of cells (C5:D7)

- Range of cells on another worksheet (Sheet1!A1:B4)

The RMI links to that cell or cells.

IBM Rational
DOORS
database

Page/item number— The unique numeric ID of the target
DOORS object. The RMI links to that object.

2-6

Supported Requirements Document Types

Requirements
Document
Type

Location Options

MuPAD®

notebook
Named item — The name of a link target in a MuPAD
notebook.

Simulink
DocBlock block
(RTF format
only)

Create links to the RTF file associated with the DocBlock
block to a Microsoft Word file:

• Search text — A search string. The RMI links to the
first occurrence of that string in the document. This
search is not case sensitive.

• Named item— A bookmark name. The RMI links to the
location of that bookmark in the document.

• Page/item number— A page number. The RMI links to
the top of that page.

Text document • Search text — A search string. The RMI links to the
first occurrence of that string within the document.
This search is not case sensitive.

• Line number — A line number. The RMI links to the
beginning of that line.

HTML file You can link only to a named anchor.

For example, in your HTML requirements document, if
you define the anchor

 ...contents...

in the Location field, enter valve_timing or, from the
document index, choose the anchor name.

Select the Document Index tab in the
Requirements > Edit/Add Links dialog box to
see available anchors in an HTML file.

2-7

2 Links Between Models and Requirements

Requirements
Document
Type

Location Options

PDF file • Named item— A bookmark name. The RMI links to the
location of that bookmark in the document. Not fully
supported, depends on the platform and bookmark type.

• Page/item number— A page number. The RMI links to
the top of that page.

Note The RMI cannot create a document index of
bookmarks in PDF files.

Web browser
URL

The RMI can link to a URL location. In the Document
field, type the URL string. When you click the link, the
document opens in a Web browser:

• Named item— An anchor name. The RMI links to that
location on the Web page at that URL.

If you register custom types of requirements documents, the RMI supports
those types of documents. For more information, see “Create a Custom
Requirements Link Type” on page 8-11.

2-8

Supported Model Objects for Requirements Linking

Supported Model Objects for Requirements Linking
You can associate requirements links between the following types of Simulink
model objects:

• Simulink block diagrams

• Simulink blocks, including library-linked blocks and subsystems

• Simulink annotations

• Signal Builder signal groups

• Stateflow charts, subcharts, states, transitions, and boxes

• Stateflow functions

2-9

2 Links Between Models and Requirements

Selection-Based Linking
You can use selection-based linking to create links from a model object
to another model object or to an object in a requirements document.
Selection-based linking is the easiest way to create requirements links from a
model to an external document.

For examples of selection-based linking, see “Link to Requirements Document
Using Selection-Based Linking” on page 2-11 and “Link Multiple Model
Objects to a Requirements Document” on page 2-20.

2-10

Link to Requirements Document Using Selection-Based Linking

Link to Requirements Document Using Selection-Based
Linking

To create a link from a model to a requirements document, using
selection-based linking:

1 In the requirements document, select text or objects to link to.

2 Right-click the model object. Select Requirements and then the option
that corresponds to one of the types for which selection-based linking
is available:

• Add link to Word selection

• Add link to active Excel cell

• Add link to current DOORS object

• Select for linking with Simulink

2-11

2 Links Between Models and Requirements

Configure RMI for IBM Rational DOORS or Microsoft
ActiveX Navigation

To use the features of the Requirements Management Interface (RMI), you
must communicate with external software products such as Microsoft Office
and IBM Rational DOORS.

Initial configuration steps are required to setup the RMI if you need to:

• Use the RMI with DOORS applications (PC only).

• Use ActiveX® controls for navigation from Microsoft Office documents to
Simulink models. You might need to register ActiveX controls when you
work with existing requirements documents (PC only).

You can setup the initial configuration for both cases by running this
command:

rmi setup

If you do not have DOORS installed on your system, the rmi setup command
does not install the DOORS API.

If the rmi setup command fails to detect a DOORS installation on your
system, and you know that the DOORS software is installed, enter the
following command:

rmi setup doors

This command prompts you to enter the path to your DOORS installation,
and then installs the required files.

2-12

The Requirements Dialog Box

The Requirements Dialog Box

In this section...

“Create Requirements Using the Requirements Dialog Box” on page 2-13

“Requirements Tab” on page 2-14

“Document Index Tab” on page 2-15

Create Requirements Using the Requirements Dialog
Box
You can manage the requirements links associated with a given model object
in the centralized location of the Requirements dialog box. In this dialog
box, you can:

• Create requirements links from one or more model objects.

• Customize information about requirements links, including specifying user
tags to filter requirements highlighting and reporting.

• Delete existing requirements links.

• Modify the stored order of requirements to control the order of labels in
context menus for linked objects.

To open the Requirements dialog box, right-click a block in a Simulink model
and select Requirements > Edit/Add Links.

2-13

2 Links Between Models and Requirements

Requirements Tab
On the Requirements tab, you specify detailed information about the link,
including:

• Description of the requirement (up to 255 words). If you create a link using
the document index, unless a description already exists, the name of the
index location becomes the description for the link .

• Path name to the requirements document.

• Document type (Microsoft Word, Microsoft Excel, IBM Rational DOORS,
MuPAD, HTML, text file, etc.).

2-14

The Requirements Dialog Box

• Location of the requirement (search text, named location, or page or item
number).

• User-specified tag or keyword.

Document Index Tab
The Document Index tab is available only if you have specified a file in the
Document field on the Requirements tab that supports indexing. On the
Document Index tab, the RMI generates a list of locations in the specified
requirements document for the following types of requirements documents:

• Microsoft Word

• IBM Rational DOORS

• HTML files

• MuPAD

Note The RMI cannot create document indexes for PDF files.

From the document index, select the desired requirement from the document
index and click OK. Unless a description already exists, the name of the index
location becomes the description for the link.

If you make any changes to your requirements document, to load any newly
created locations into the document index, you must click Refresh. During a
MATLAB session, the RMI does not reload the document index unless you
click the Refresh button.

2-15

2 Links Between Models and Requirements

The Requirements Settings Dialog Box
You can manage your RMI preferences in the Requirements Settings dialog
box. These settings are global and not associated with any particular model.
To open the Requirements Settings dialog box, from the Simulink Editor,
select Analysis > Requirements > Settings. In this dialog box, you can
select the:

• Report tab to customize the requirements report without using the Report
Generator. For setting information, see “Customize Requirements Report
Using the RMI Settings” on page 4-17.

• Selection Linking tab to set the options for linking to the active selection
in a supported document. For setting information, see “Selection Linking
Tab” on page 2-16.

• Filters tab to set the options for filtering requirements in a model. For
filtering information, see “Configure Requirements Filtering” on page 4-30.

• Storage tab to set the default way in which the RMI stores requirements
links in a model. For storage information, see “Specify Storage for
Requirements Links” on page 3-4.

Selection Linking Tab
In the Requirements Settings dialog box, on the Selection Linking
tab, are the following options for linking to the active selection in a
supported document. To open the Requirements Settings dialog box, select
Analysis > Requirements > Settings.

Options Description

For linking to the active selection within an external document:

Enabled applications Enable selection-based linking
shortcuts to Microsoft Word,
Microsoft Excel, or DOORS
applications.

Document file reference Select type of file reference. For
information on what settings to use,
see “Document Path Storage” on
page 5-15.

2-16

The Requirements Settings Dialog Box

Options Description

Apply this user tag to new links Enter text to attach to the links you
create. For more information about
user tags, see “Filter Requirements
with User Tags” on page 4-25

When creating selection-based links:

Modify destination for
bi-directional linking

Creates links both to and from
selected link destination.

Store absolute path to model file Select type of file reference. For
information, see “Document Path
Storage” on page 5-15.

Use custom bitmap for
navigation controls in
documents

Select and browse for your bitmap.
You can use your own bitmap file to
control the appearance of navigation
links in your document.

Use ActiveX buttons in Word and
Excel (backward compatibility)

Select to use legacy ActiveX controls
to create links in Microsoft Word
and Microsoft Excel applications. By
default, if not selected, you create
URL-based links.

2-17

2 Links Between Models and Requirements

Link Model Objects

In this section...

“Link Objects in the Same Model” on page 2-18

“Link Objects in Different Models” on page 2-18

“Link from External Applications” on page 2-19

Link Objects in the Same Model
You can create a requirements link from one model object to another model
object:

1 Right-click the link destination model object and select
Requirements > Select for linking with Simulink.

2 Right-click the link source model object and select Requirements > Add
link to selected object.

3 Right-click the link source model object again and select Requirements.
The new link appears at the top of the Requirements submenu.

Link Objects in Different Models
You can create links between objects in related models. This example shows
how to link model objects in slvnvdemo_powerwindow_controller and
slvnvdemo_powerwindow.

1 Open the slvnvdemo_powerwindow_controller and
slvnvdemo_powerwindow models.

2 In the slvnvdemo_powerwindow model window, double-click
the power_window_control_system subsystem. The
power_window_control_system subsystem opens.

3 In the slvnvdemo_powerwindow/power_window_control_system
subsystem window, right-click the control subsystem. Select
Requirements > Select for linking with Simulink.

2-18

Link Model Objects

4 In the slvnvdemo_powerwindow_controller model window, right-click
the control subsystem. Select Requirements > Add link to selected
object.

5 Right-click the slvnvdemo_powerwindow_controller/control subsystem
and select Requirements. The new RMI link appears at the top of the
Requirements submenu.

6 To verify that the links were created, in the
slvnvdemo_powerwindow_controller model window, select
Analysis > Requirements > Highlight Model.

The blocks with requirements links are highlighted.

7 Close the slvnvdemo_powerwindow_controller and
slvnvdemo_powerwindow models.

Link from External Applications
You can navigate to Simulink objects with requirements using the internal
MATLAB HTTP server. To get the URL for an object in your model, right-click
the object and select Requirements > Copy URL to Clipboard. You can
then paste the URL into an external application and use it to navigate back to
the corresponding object in your model.

To enable this HTTP navigation, the internal MATLAB HTTP server must
be activated on your local host. Selecting Requirements > Copy URL
to Clipboard activates the internal HTTP server. You can also enter the
command rmi('httpLink') at the MATLAB command prompt to activate the
internal HTTP server.

2-19

2 Links Between Models and Requirements

Link Multiple Model Objects to a Requirements Document
You can link multiple Simulink and Stateflow objects to a requirement. The
workflow is:

1 In the requirements document, select the requirement.

2 In the Simulink Editor or Stateflow Editor, select the objects to link to the
selected requirement. You can select multiple objects by holding down the
Shift key while you click each object that you want to select. Note that you
can only select multiple objects in the same diagram.

3 Right-click one of the selected objects to open the context menu and hover
over Requirements.

2-20

Link Multiple Model Objects to a Requirements Document

4 Select one of the selection-based linking options:

• Add link to Word selection

• Add link to active Excel cell

• Add link to current DOORS object

2-21

2 Links Between Models and Requirements

5 You can also add and edit links for multiple objects using the Requirements
dialog box. To open the Requirements dialog box, in the Requirements
context menu, select Add Links to All.

Link Multiple Model Objects to a Requirement
Document Using a Simulink DocBlock
You can minimize the number of links to the external requirements document
by using a DocBlock in the model. You can insert aDocBlock at the top level
of the model and link your external requirements document to it. Then you

2-22

Link Multiple Model Objects to a Requirements Document

can link the DocBlock to all objects in the model that are relevant to the
requirement in the external document.

This example shows how to link multiple model objects to a requirement
document using a DocBlock.

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Open a requirements document associated with that model:

rmi('view','slvnvdemo_fuelsys_officereq',1);

3 Insert a Simulink DocBlock into the model.

4 Right-click DocBlock and selectMask Parameters. The Block Parameters:
DocBlock dialog box opens.

5 In the Block Parameters: DocBlock dialog box Document type drop-down
list, select RTF.

6 Click Apply or OK to create the link.

7 In slvnvdemo_FuelSys_DesignDescription.docx, find and select the
section titled 2.2 Determination of pumping efficiency.

8 In the slvnvdemo_fuelsys_officereq model window, right-click the
DocBlock and select Requirements > Add link to Word selection.

The RMI inserts a bookmark at that location in the requirements document.

9 In the slvnvdemo_fuelsys_officereq model window, right-click the
DocBlock and selectRequirements > Select for linking with Simulink.

10 In the slvnvdemo_fuelsys_officereq/fuel rate controller subsystem
window, select the control logic chart and the Airflow calculation
subsystems. Use the shift key to select both.

11 Right-click the Airflow calculation subsystem and select
Requirements > Add link to selected object.

2-23

2 Links Between Models and Requirements

12 In the slvnvdemo_fuelsys_officereq model window, select DocBlock,
right-click, and select Requirements.

The link to the new requirements are on the top menu option.

13 To verify that the links were created, select
Analysis > Requirements > Highlight Model.

The DocBlock, control logic chart, and Airflow calculation
subsystem are highlighted.

14 Close the slvnvdemo_fuelsys_officereq model and the
slvnvdemo_FuelSys_DesignDescription.docx requirements document.

2-24

Link to Requirements in Microsoft® Word Documents

Link to Requirements in Microsoft Word Documents

In this section...

“Create Bookmarks in a Microsoft Word Requirements Document” on page
2-25

“Open the Example Model and Associated Requirements Document” on
page 2-27

“Create a Link from a Model Object to a Microsoft Word Requirements
Document” on page 2-28

Create Bookmarks in a Microsoft Word Requirements
Document
You can create bookmarks in your Microsoft Word requirements documents
to identify the requirements that you want to link to. When you create the
links, you specify that the RMI must link to an existing bookmark, rather
than create a new bookmark.

This approach offers several advantages:

• You can give the bookmarks meaningful names that represent the content
of the requirement.

• When the RMI creates the links, it does not modify your requirements
document.

If you have a requirements document that contains bookmarks for
requirements, to link from a Simulink model to bookmarks that represent
requirements, follow these steps:

1 Open your model.

2 Open your Microsoft Word requirements document that contains
bookmarks that identify requirements.

3 Right-click a block in the model that you want to link to a requirement and
select Requirements > Edit/Add Links

The Requirements dialog box opens.

2-25

2 Links Between Models and Requirements

4 Click New.

5 Click Browse and navigate to the Microsoft Word requirements document
that has bookmarks.

6 Open the document. The RMI populates the Document and Document
type fields.

7 Click the Document Index tab of the Requirements dialog box.

The Document Index tab lists all bookmarks in the requirements
document, as well as all section headings (text that you have styled as
Heading 1, Heading 2, and so on).

The following graphic is an example of a document index that lists the
bookmarks in a requirements document. The document index lists the
bookmarks in alphabetical order, not in order of location within the
document.

2-26

Link to Requirements in Microsoft® Word Documents

8 Select the bookmark that you want to link the block to and click OK.

The RMI creates a link from the block to the location of the bookmark in
the requirements document without modifying the document itself.

Open the Example Model and Associated
Requirements Document
This example describes how to create links from objects in a Simulink model
to selected requirements text in a Microsoft Word document.

Navigate from the model to the requirements document:

2-27

2 Links Between Models and Requirements

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Open a requirements document associated with that model:

rmi('view','slvnvdemo_fuelsys_officereq',1);

Keep the example model and the requirements document open.

Create a Link from a Model Object to a Microsoft
Word Requirements Document
Create a link from the Airflow calculation subsystem in the
slvnvdemo_fuelsys_officereq model to selected text in the requirements
document:

1 In slvnvdemo_FuelSys_DesignDescription.docx, find the section titled
2.2 Determination of pumping efficiency.

2 Select the header text.

3 Open the example model:

slvnvdemo_fuelsys_officereq

4 Select Analysis > Requirements > Settings. The Requirements Settings
dialog box opens.

5 On the Selection Linking tab of the Requirements Settings dialog box:

• Set the Document file reference option to path relative to model
folder.

• Enable Modify destination for bi-directional linking.

When you select this option, every time you create a selection-based
link from a model object to a requirement, the RMI inserts navigation
objects at the designated location.

For more information about the settings, see “The Requirements Settings
Dialog Box” on page 2-16.

6 Double-click the fuel rate controller subsystem to open it.

2-28

Link to Requirements in Microsoft® Word Documents

7 Open the Airflow calculation subsystem.

8 Right-click the Pumping Constant block and select Requirements > Add
link to Word selection.

The RMI inserts a bookmark at that location in the requirements document
and assigns it a generic name, in this case, Simulink_requirement_item_7.

9 To verify that the link was created, select
Analysis > Requirements > Highlight Model.

The Pumping Constant block, and other blocks with requirements links,
are highlighted.

10 To navigate to the link, right-click the Pumping Constant block and select
Requirements > 1. “Determination of pumping efficiency”.

The section 2.2 Determination of pumping efficiency is displayed,
selected in the requirements document.

Keep the example model and the requirements document open.

View Link Details
To view the details of the link that you just created, right-click the Pumping
Constant block and select Requirements > Edit/Add Links.

The Requirements dialog box opens.

2-29

2 Links Between Models and Requirements

This dialog box contains the following information for the link you just created:

• Description of the link, which for selection-based links, matches the text
of the selected requirements document, in this case Determination of
pumping efficiency.

• Name of the requirements document, in this case
slvnvdemo_FuelSys_DesignDescription.docx.

• Document type, in this case, Microsoft Word.

2-30

Link to Requirements in Microsoft® Word Documents

• The type and identifier of the location in the requirements document. With
selection-based linking for Microsoft Word requirements documents, the
RMI creates a bookmark in the requirements document. For this link, the
RMI created a bookmark named Simulink_requirement_item_7.

If you do not want the RMI to modify the Microsoft Word requirements
document when it creates links, create bookmarks in your Microsoft Word
file, as described in “Create Bookmarks in a Microsoft Word Requirements
Document” on page 2-25.

• User tag, a user-defined keyword. This link does not have a user tag.

Note For more information about user tags, see “Filter Requirements
with User Tags” on page 4-25

2-31

2 Links Between Models and Requirements

Link to Requirements in IBM Rational DOORS Databases
This example shows how to create links from objects in a Simulink model to
requirements in an IBM Rational DOORS database.

1 Open a DOORS formal module.

2 Click to select one of the requirement objects.

3 Open the example model:

sldemo_fuelsys

4 Open the fuel_rate_control subsystem.

5 Right-click the airflow_calc subsystem and select Requirements > Add
link to current DOORS object.

6 To confirm the requirement link, right-click the airflow_calc subsystem and
select Requirements. In the submenu, the top item is the heading text
for the DOORS requirement object.

If you navigate to a DOORS requirement, the DOORS module opens in read
only mode. If you want to modify the DOORS module, open the module
using DOORS software.

2-32

Link to Requirements in IBM® Rational® DOORS® Databases

Note To view an example of using the RMI with an IBM Rational DOORS
database, run the Managing Requirements for Fault-Tolerant Fuel Control
System (IBM Rational DOORS) example at the MATLAB command prompt.

2-33

2 Links Between Models and Requirements

Link to Requirements in Microsoft Excel Workbooks

In this section...

“Navigate from a Model Object to Requirements in a Microsoft® Excel®

Workbook” on page 2-34

“Create Requirements Links to the Workbook” on page 2-34

“Link Multiple Model Objects to a Microsoft® Excel® Workbook” on page 2-35

“Change Requirements Links” on page 2-36

Navigate from a Model Object to Requirements in a
Microsoft Excel Workbook

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Select Analysis > Requirements > Highlight Model to highlight the
model objects with requirements.

3 Right-click the Test inputs Signal Builder block and select
Requirements > 1. “Normal mode of operation”.

The slvnvdemo_FuelSys_TestScenarios.xlsx file opens, with the
associated cell highlighted.

Keep the example model and Microsoft Excel requirements document open.

For information about creating requirements links in Signal Builder blocks,
see “Link Signal Builder Blocks to Requirements Documents” on page 2-53.

Create Requirements Links to the Workbook

1 At the top level of the slvnvdemo_fuelsys_officereq model, right-click
the speed sensor block and select Requirements > Edit/Add Links.

The Requirements dialog box opens.

2-34

Link to Requirements in Microsoft® Excel® Workbooks

2 To create a requirements link, click New.

3 In the Description field, enter:

Speed sensor failure

You will link the speed sensor block to the Speed Sensor Failure
information in the Microsoft Excel requirements document.

4 When you browse and select a requirements document, the RMI stores the
document path as specified by the Document file reference option on the
Requirements Settings dialog box, Selection Linking tab.

For information about which setting to use for your working environment,
see “Document Path Storage” on page 5-15.

5 At the Document field, click Browse to locate and open the
slvnvdemo_FuelSys_TestScenarios.xlsx file.

The Document Type field information changes to Microsoft Excel.

6 In the workbook, the Speed sensor failure information is in cells B22:E22.
For the Location (Type/Identifier) field, select Sheet range and in the
second field, enter B22:E22. (The cell range letters are not case sensitive.)

7 Click Apply or OK to create the link.

8 To confirm that you created the link, right-click the speed sensor block and
select Requirements > 1. “Speed sensor failure”.

The workbook opens, with cells B22:E22 highlighted.

Keep the example model and Microsoft Excel requirements document open.

Link Multiple Model Objects to a Microsoft Excel
Workbook
You can use the same technique to link multiple Simulink and Stateflow
objects to a requirement in a Microsoft Excel workbook. The workflow is:

1 In the model window, select the objects to link to a requirement.

2-35

2 Links Between Models and Requirements

2 Right-click one of the selected objects and selectRequirements > Edit/Add
Links.

3 When you browse and select a requirements document, the RMI stores the
document path as specified by the Document file reference option on the
Requirements Settings dialog box, Selection Linking tab.

For information about which setting to use for your working environment,
see “Document Path Storage” on page 5-15.

4 Use the Requirements dialog to specify information about the Microsoft
Excel requirements document, the requirement, and the link.

5 Click Apply or OK to create the link.

Change Requirements Links

1 In the slvnvdemo_fuelsys_officereq model, right-click the MAP sensor
block and select Requirements > Edit/Add Links.

The Requirements dialog box opens displaying the information about the
requirements link.

2-36

Link to Requirements in Microsoft® Excel® Workbooks

2 In the Description field, enter:

MAP sensor test scenario

The User tag field contains the tag test. User tags filter requirements for
highlighting and reporting.

Note For more information about user tags, see “Filter Requirements
with User Tags” on page 4-25.

2-37

2 Links Between Models and Requirements

3 Click Apply or OK to save the change.

Keep the example model open.

2-38

Link to Requirements in MuPAD® Notebooks

Link to Requirements in MuPAD Notebooks
This example shows how to create a link from a Simulink model to a MuPAD
notebook. You use a model that simulates a nonlinear second-order system
with the van der Pol equation.

Before beginning this example, create a MuPAD notebook with one or more
link targets. This example uses a MuPAD notebook that includes information
about solving the van der Pol equation symbolically and numerically.

Note You must have the Symbolic Math Toolbox™ installed on your system
to open a MuPAD notebook. For information about creating a MuPAD
notebook, see “Create, Open, and Save MuPAD Notebooks”.

1 Open an example model for the van der Pol equation:

vdp

2 Right-click a blank area of the model and select Requirements at This
Level > Edit/Add Links.

You are adding the requirement to the model itself, not to a specific block
in the model.

3 Click New.

4 In the Document type drop-down list, select MuPAD Notebook.

5 When you browse and select a requirements document, the RMI stores the
document path as specified by the Document file reference option on the
Requirements Settings dialog box, Selection Linking tab.

For information about which setting to use for your working environment,
see “Document Path Storage” on page 5-15.

6 Click Browse to navigate to the notebook that you want to use.

Use a notebook that has link targets in it.

2-39

2 Links Between Models and Requirements

7 Make sure that the MuPAD notebook is in a saved state. Any link targets
created since the last save do not appear in the RMI document index.

8 To list the link targets, in the Requirements dialog box, click the
Document Index tab.

This figure shows two link targets.

2-40

Link to Requirements in MuPAD® Notebooks

Note These link targets are in a MuPAD notebook that was created for
this example. The Document Index tab displays only link targets that
you have created in your MuPAD notebook.

9 Select a link target name and click Apply.

The Requirements tab reopens, displaying the details of the newly
created link. Unless you have previously entered a description, the link
target name appears in the Description field.

10 To confirm that you created the link, right-click a blank area of the model
and select Requirement. The new link is at the top of the submenu.

2-41

2 Links Between Models and Requirements

Create Requirements Reports
To create the default requirements report for a Simulink model:

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Make sure that your current working folder is writable.

3 In the Simulink Editor, select Analysis > Requirements > Generate
Report.

If your model is large and has many requirements links, it takes a few
minutes to create the report.

A Web browser window opens with the contents of the report. The following
graphic shows the Table of Contents for the slvnvdemo_fuelsys_officereq
model.

2-42

Create Requirements Reports

A typical requirements report includes:

• Table of contents

• List of tables

• Per-subsystem sections that include:

- Tables that list objects with requirements and include links to associated
requirements documents

- Graphic images of objects with requirements

- Lists of objects with no requirements

For detailed information about requirements reports, see “Create and
Customize Requirements Report” on page 4-7.

2-43

2 Links Between Models and Requirements

Link to Requirements Modeled in Simulink
You can use Simulink to model your design requirements. For example, you
can use verification blocks to specify desired system properties and model
the design requirements. The Requirements Management Interface (RMI)
allows you to create navigation links between the requirements modeled
in Simulink, the associated Simulink objects, and related test cases. This
example shows how to use the RMI to create and view links to requirements
modeled in Simulink.

Open Example Model

Open the Power Window Controller model by typing the command:

open_system('slvnvdemo_powerwindowController');

2-44

Link to Requirements Modeled in Simulink

Verification Subsystems for Power Window Controller Model

Open the verification model, ’Power Window Controller Temporal Property
Specification’. This model specifies properties and requirements of the
slvnvdemo_powerwindowController model.

Consider the following design requirements for the controller:

1 Requirement 1 (Obstacle Response) - Whenever an obstacle is detected,
the controller shall give the down command for one second. This
requirement is modeled in Verification Subsystem2.

2-45

2 Links Between Models and Requirements

2 Requirement 2 (Autodown feature) - If the driver presses the down button
for less than 1 second, the controller keeps issuing the down command
until the end has been reached, or the driver presses the up button. This
requirement is modeled in Verification Subsystem3

See Design Verifier Temporal Properties example for more details.

open_system('slvnvdemo_powerwindow_vs');

2-46

Link to Requirements Modeled in Simulink

Create RMI Link to a Simulink Object

Create an RMI link from Verification Subsystem2 to the emergencyDown
state in the slvnvdemo_powerwindowController model.

1 Open slvnvdemo_powerwindowController model.

2 Right-click on emergencyDown state and select Requirements > Select
for linking with Simulink.

3 Right-click on Verification Subsystem2 and select Requirements > Add
link to selected object.

4 Right-click the Verification Subsystem2. The new RMI link appears at
the top of Requirements submenu.

5 Close slvnvdemo_powerwindowController model.

6 Right-click on Verification Subsystem2. Navigate the new link at the top
of the Requirements submenu. Model opens and emergencyDown state is
highlighted.

Link Simultaneously to Multiple Simulink Objects

You can link to a multiple selection of Simulink objects. Use the Shift key to
select all the following objects as in figure below.

• iniDriverDown

• autoDriverDown

• after(5,tick) transition out of iniDriverDown

• [driver[1]] transition to autoDriverDown

2-47

2 Links Between Models and Requirements

1 Right-click on this group of objects, select Requirements > Select for
linking with Simulink. Be careful to not lose the selections when you
right-click.

2 Right-click on Verification Subsystem3 and select Requirements > Link
to 4 selected objects.

Link to a Group of Simulink Objects

1 Right-click on NAND block in Global Assumptions and select
Requirements > Select for linking with Simulink.

2 Drag the mouse across endstop and obstacle inputs in
slvnvdemo_powerwindowController to select both inputs.

2-48

Link to Requirements Modeled in Simulink

3 Right-click on this group of objects and select Add link to selected object.
Be careful to not lose the selection.

4 Click on the background of slvnvdemo_powerwindowController to clear
the group selection.

5 Right-click each input and select Requirements to display new links.
Click the new link, confirm that NAND is highlighted.

Create Links for Navigation in Both Directions

To create links for navigation in both directions:

1 Open Requirements Settings dialog box.

2 Select the Selection Linking tab.

3 Enable Modify destination for bi-directional linking.

Now, when you create a link from one Simulink object to another, a
corresponding "return" link is also created.

2-49

2 Links Between Models and Requirements

Highlight and Report RMI Links Between Simulink Objects

Create RMI links to Simulink objects in the same way as links to external
documents:

1 In the slvnvdemo_powerwindow_vs model window, select Analysis >
Requirements > Highlight Model to highlight all RMI links in the
model, including links to Simulink objects.

2 In the slvnvdemo_powerwindow_vs model window, select Analysis >
Requirements > Generate Report.

3 In the generated report, click a hyperlink in any requirements table. This
navigates to the corresponding object in Simulink diagram.

2-50

Link to Requirements Modeled in Simulink

Cleanup

Close all open models. Do not save changes.

close_system('slvnvdemo_powerwindowController', 0);
close_system('slvnvdemo_powerwindow_vs', 0);

2-51

2 Links Between Models and Requirements

Requirements Linking with Simulink Annotations
You can create requirements links to and from Simulink.Annotation objects
using the Requirements Management Interface (RMI). Annotations are
free-floating text boxes that you can place inside a Simulink model. For more
information, see “Annotate Diagrams” in the Simulink documentation. You
can use RMI linking to associate annotations with other Simulink objects
or external requirements documents. Note that requirements linking for
annotations is not supported in Stateflow.

Requirements linking for Simulink annotations is enabled only if you configure
your model to store requirements data externally. To specify external storage
of requirements data for a model, in the Requirements Settings dialog box
under Storage > Default storage location for requirements links
data, select Store externally (in a separate *.req file). If you have an
existing model that contains internally stored requirements links, you must
convert the model to store requirements data externally before you can use
requirements linking for annotations in the model. To switch the model from
internal to external RMI storage, move all existing requirements links in it
to an external .req file by selecting Analysis > Requirements > Move
to File. For more information on requirements links storage, see “Specify
Storage for Requirements Links” on page 3-4.

Note If you later change your model to store requirements links internally
as described in “Move Externally Stored Requirements Links to the Model
File” on page 3-8, or if you save the model in a version of MATLAB prior
to R2012b, annotation requirements links are either discarded or attached
to a corresponding parent diagram.

Annotations are context-specific. Unlike copying other Simulink objects,
copying an annotation does not copy its associated requirements links.
Requirements links from annotations do not appear in generated code, but
requirements links to annotations from other Simulink objects do appear.

2-52

Link Signal Builder Blocks to Requirements Documents

Link Signal Builder Blocks to Requirements Documents
You can create links from a signal group in a Signal Builder block to a
requirements document:

1 Open the model:

sf_car

2 In the sf_car model window, double-click the User Inputs block.

The Signal Builder dialog box opens, displaying four groups of signals.
The Passing Maneuver signal group is the current active group. The RMI
associates any requirements links that you add to the current active signal
group.

3 At the far-right end of the toolbar, click the Show verification settings
button . (You might need to expand the Signal Builder dialog box for this
button to become visible.)

A Requirements pane opens on the right-hand side of the Signal Builder
dialog box.

4 Place your cursor in the window, right-click, and select Edit/Add Links.

The Requirements dialog box opens.

5 Click New. In the Description field, enter User input requirements.

6 When you browse and select a requirements document, the RMI stores the
document path as specified by the Document file reference option on the
Requirements Settings dialog box, Selection Linking tab.

For information about which setting to use for your working environment,
see “Document Path Storage” on page 5-15.

2-53

2 Links Between Models and Requirements

7 Browse to a requirements document and click Open.

8 In the Location drop-down list, select Search text to link to specified
text in the document.

9 Next to the Location drop-down list, enter User Input Requirements.

10 Click Apply to create the link.

11 To verify that the RMI created the link, in the Simulink Editor, select the
User Inputs block, right-click, and select Requirements.

The link to the new requirement is the option at the top of the submenu.

12 Save the sf_car_linking model.

Note Links that you create in this way associate requirements information
with individual signal groups, not with the entire Signal Builder block.

In this example, switch to a different active group in the drop-down list to link
a requirement to another signal group.

2-54

Link Signal Builder Blocks to Model Objects

Link Signal Builder Blocks to Model Objects
This example shows how to create links from a signal group in a Signal
Builder block to a model object:

1 Open the sf_car model.

2 Open the sf_car/shift_logic chart.

3 Right-click upshifting and select Requirements > Select for linking
with Simulink.

4 In the sf_car model window, double-click the User Inputs block.

The Signal Builder dialog box opens, displaying four groups of signals.
The Passing Maneuver signal group is the current active group. The RMI
associates any requirements links that you add to the current active signal
group.

5 In the Signal Builder dialog box, click the Gradual Acceleration tab.

6 At the far-right end of the toolbar, click the Show verification settings
button . (You might need to expand the Signal Builder dialog box for this
button to become visible.)

A Requirements pane opens on the right-hand side of the Signal Builder
dialog box.

7 Place your cursor in the window, right-click, and select Edit/Add Links.

The Requirements dialog box opens.

8 Click New. In the Description field, enter Upshifting.

2-55

2 Links Between Models and Requirements

9 In the Document type field, select Simulink. Click Use current.
The software fills in the field with the Location: (Type/Identifier)
information for upshifting.

10 Click Apply to create the link.

11 In the model window, select the User Inputs block, right-click, and select
Requirements.

The link to the new requirement is the option at the top of the submenu.

12 To verify that the links were created, in the sf_car model window, select
Analysis > Requirements > Highlight Model.

The blocks with requirements links are highlighted.

13 Close the sf_car model.

2-56

Link Signal Builder Blocks to Model Objects

Note Links that you create in this way associate requirements information
with individual signal groups, not with the entire Signal Builder block.

2-57

2 Links Between Models and Requirements

2-58

3

How Is Requirements Link
Information Stored?

• “External Storage” on page 3-2

• “Guidelines for External Storage of Requirements Links” on page 3-3

• “Specify Storage for Requirements Links” on page 3-4

• “Save Requirements Links in External Storage” on page 3-5

• “Load Requirements Links from External Storage” on page 3-6

• “Move Internally Stored Requirements Links to External Storage” on
page 3-7

• “Move Externally Stored Requirements Links to the Model File” on page 3-8

3 How Is Requirements Link Information Stored?

External Storage
The first time you create links to requirements in a Simulink model, the
RMI uses your designated storage preference. When you reopen the model,
the RMI loads the internally stored links, or the links from the external file,
as long as the file exists with the same name and location as when you last
saved the links.

The RMI allows you to save your links file as a different name or in a different
folder. However, when you start with the links file in a nondefault location,
you must manually load those links into the model. After you load those links,
the RMI associates that model with that file and loads the links automatically.

As you work with your model, the RMI stores links using the same storage as
the existing links. For example, if you open a model that has internally stored
requirements links, any new links you create are also stored internally. This
is true even if your preference is set to external storage.

All requirements links must be stored either with the model or in an external
file. You cannot mix internal and external storage within a given model.

To see an example of the external storage capability using a Simulink model,
at the MATLAB command line, enter:

slvnvdemo_powerwindow_external

3-2

Guidelines for External Storage of Requirements Links

Guidelines for External Storage of Requirements Links
If you decide to store requirements links in an external file, keep the following
guidelines in mind:

• When sharing models, use the default name and location.

By default, external requirements are stored in a file named
model_name.req in the same folder as the model. If you give your model
to others to review the requirements traceability, give the reviewer both
the model and .req files. That way, when you load the model, the RMI
automatically loads the links file.

• Do not rename the model outside of Simulink.

If you need to resave the model with a new name or in a different location,
in the model window, use File > Save As. Selecting this option causes
the RMI to resave the corresponding .req file using the model name and
in the same location as the model.

• Be aware of unsaved requirements changes.

When you change a Simulink model, an asterisk appears next to the model
name in the title bar, indicating that the model has unsaved changes. If
you are creating new requirements links and storing them externally, this
asterisk does not appear because the model file itself has not changed.
You can explicitly save the links, or, when you close the model, the RMI
prompts you to save the requirements links. When you save the model, the
RMI saves the links in the external file.

3-3

3 How Is Requirements Link Information Stored?

Specify Storage for Requirements Links
By default, the Requirements Management Interface (RMI) stores
requirements links with the model file. In the Requirements Settings dialog
box, on the Storage tab, you can enable external storage or reenable internal
storage. This setting goes into effect immediately and applies to all new
models and to existing models with no links to requirements.

If you open a model that already has requirements links, the RMI uses the
storage mechanism you used previously with that model, regardless of what
your default storage setting is.

To specify the requirements storage setting:

1 In the model window, select Analysis > Requirements > Settings.

2 In the Requirements Settings dialog box, select the Storage tab.

3 Under Default storage location for requirements links data:

• To enable internal storage, select Store internally (embedded in
model file).

• To enable external storage, select Store externally (in a separate
*.req file).

These settings go into effect immediately.

3-4

Save Requirements Links in External Storage

Save Requirements Links in External Storage
The Requirements Management Interface (RMI) stores externally stored
requirements links in a file whose name is based on the model file. Because
of this, before you create requirements links to be stored in an external file,
you must save the model with a value file name.

You add, modify, and delete requirements links in external storage the
same way you do when the requirements links are stored in the model file.
The main difference is when you change externally stored links, the model
file does not change. The asterisk in the title bar of the model window that
indicates a model has unsaved changes does not appear when you change
requirements links. However, when you close the model, the RMI asks if you
want to save the requirements links modifications.

There are several ways to save requirements links that are stored in an
external file, as listed in the following table.

Select... To...

Analysis > Requirements > Save
Links As

Save the requirements links in an
external file using a file name that
you specify. The model itself is not
saved.

Analysis > Requirements > Save
Links

Save the requirements links in an
external file using the default file
name, model_name.req, or to the
previously specified file. The model
itself is not saved.

File > Save Save the current requirements
links to an external file named
model_name.req, or to the previously
specified file. Any changes you have
made to the model are also saved.

File > Save As Rename and save the model and
the external requirements links.
The external file is saved as
new_model_name.req.

3-5

3 How Is Requirements Link Information Stored?

Load Requirements Links from External Storage
When you open a Simulink model that does not have internally stored
requirements links, the RMI tries to load requirements links from an .req
file, either the default file, or a previously specified file. If that file does not
exist, the RMI assumes that this model has no requirements links.

To explicitly load requirements links from an external file:

1 Select Analysis > Requirements > Load Links.

The Select a file to load RMI data dialog box opens, with the default file
name or the previously used file name loaded into the File name field.

2 Select the file from which to load the requirements links.

3 Click Open to load the links from the selected file.

Caution If your model has unsaved changes to requirements links and you
try to load another file, a warning appears.

3-6

Move Internally Stored Requirements Links to External Storage

Move Internally Stored Requirements Links to External
Storage

If you have a model with requirements links that are stored with the model,
you can move those links to an external file. When you move internally
stored links to a file, the RMI deleted the internally stored links from the
model file and saves the model. From this point on, the data exists only in
the external file.

1 Open the model that contains internally stored requirements links.

2 Select Analysis > Requirements > Move to File.

The Select a file to store RMI data dialog box prompts you to save the file
with the default name model_name.req.

3 Accept the default name, or enter a different file name if required.

4 Click Save.

Note Use the default name for externally stored requirements. For more
information about this recommendation, see “Guidelines for External
Storage of Requirements Links” on page 3-3.

3-7

3 How Is Requirements Link Information Stored?

Move Externally Stored Requirements Links to the Model
File

If you have a model with requirements links that are stored in an external
file, you can move those links to the model file.

1 Open the model that has only externally stored requirements links.

2 Make sure the right set of requirements links are loaded from the external
file.

3 Select Analysis > Requirements > Copy to model.

An asterisk appears next to the model name in the title bar of the model
window indicating that your model now has unsaved changes.

4 Save the model with the requirements links.

From this point on, the RMI stores all requirements links internally, in the
model file. When you add, modify, or delete links, the changes are stored with
the model, even if the Default storage location for requirements links
data option is set to Store externally (in a separate *.req file).

3-8

4

Reviewing Requirements

• “Highlight Model Objects with Requirements” on page 4-2

• “Navigate to Requirements from Model” on page 4-5

• “Create and Customize Requirements Report” on page 4-7

• “Filter Requirements with User Tags” on page 4-25

4 Reviewing Requirements

Highlight Model Objects with Requirements
You can highlight a model to see which objects in the model have links to
requirements in external documents. You highlight a model from the Model
Editor or from the Model Explorer.

In this section...

“Highlight Model Objects with Requirements Using Model Editor” on page
4-2

“Highlight Model Objects with Requirements Using Model Explorer” on
page 4-3

Highlight Model Objects with Requirements Using
Model Editor
If you are working in the Simulink Editor and want to see which model
objects in the slvnvdemo_fuelsys_officereq model have requirements,
follow these steps:

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Select Analysis > Requirements > Highlight Model.

Two types of highlighting indicate model objects with requirements:

• Yellow highlighting indicates objects that have requirements links for
the object itself.

• Orange outline indicates objects, such as subsystems, whose child objects
have requirements links.

4-2

Highlight Model Objects with Requirements

Objects that do not have requirements are colored gray.

3 To remove the highlighting from the model, select Analysis >
Requirements > Unhighlight Model. Alternatively, you can right-click
anywhere in the model, and select Remove Highlighting.

While a model is highlighted, you can still manage the model and its contents.

Highlight Model Objects with Requirements Using
Model Explorer
If you are working in Model Explorer and want to see which model objects
have requirements, follow these steps:

4-3

4 Reviewing Requirements

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Select View > Model Explorer.

3 To highlight all model objects with requirements, click the Highlight

items with requirements on model icon ().

The Simulink Editor window opens, and all objects in the model with
requirements are highlighted.

Note If you are running a 64-bit version of MATLAB, when you navigate to
a requirement in a PDF file, the file opens at the top of the page, not at the
bookmark location.

4-4

Navigate to Requirements from Model

Navigate to Requirements from Model

In this section...

“Navigate from Model Object” on page 4-5

“Navigate from System Requirements Block” on page 4-5

Navigate from Model Object
You can navigate directly from a model object to that object’s associated
requirement. When you take these steps, the external requirements document
opens in the application, with the requirements text highlighted.

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Open the fuel rate controller subsystem.

3 To open the linked requirement, right-click the Airflow calculation
subsystem and select Requirements > 1. “Mass airflow estimation”.

The Microsoft Word document
slvnvdemo_FuelSys_DesignDescription.docx, opens with the section 2.1
Mass airflow estimation selected.

Note If you are running a 64-bit version of MATLAB, when you navigate to
a requirement in a PDF file, the file opens at the top of the page, not at the
bookmark location.

Navigate from System Requirements Block
Sometimes you want to see all the requirements links at a given level of
the model hierarchy. In such cases, you can insert a System Requirements
block to collect all requirements links in a model or subsystem. The System
Requirements block lists requirements links for the model or subsystem in
which it resides; it does not list requirements links for model objects inside

4-5

4 Reviewing Requirements

that model or subsystem, because those are at a different level of the model
hierarchy.

In the following example, you insert a System Requirements block at the
top level of the slvnvdemo_fuelsys_officereq model, and navigate to the
requirements using the links inside the block.

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 In the Simulink Editor, select Analysis > Requirements > Highlight
Model.

3 Open the fuel rate controller subsystem.

The Airflow calculation subsystem has a requirements link.

4 Open the Airflow calculation subsystem.

5 In the Simulink Editor, select View > Library Browser.

6 On the Libraries pane, select Simulink Verification and Validation.

This library contains only one block—the System Requirements block.

7 Drag a System Requirements block into the Airflow calculation subsystem.

The RMI software collects and displays any requirements links for that
subsystem in the System Requirements block.

8 In the System Requirements block, double-click 1. “Mass airflow
subsystem”.

The Microsoft Word document,
slvnvdemo_FuelSys_DesignDescription.docx, opens, with the section
2.1 Mass airflow estimation selected.

4-6

Create and Customize Requirements Report

Create and Customize Requirements Report

In this section...

“Create Default Requirements Report” on page 4-7

“Report for Requirements in Model Blocks” on page 4-15

“Customize Requirements Report” on page 4-17

“Generate Requirements Reports Using Simulink” on page 4-23

Create Default Requirements Report
If you have a model that contains links to external requirements documents,
you can create an HTML report that contains summarized and detailed
information about those links. In addition, the report contains links that
allow you to navigate to both the model and to the requirements documents.

You can generate a default report with information about all the requirements
associated with a model and its objects.

Note If the model for which you are creating a report contains Model blocks,
see “Report for Requirements in Model Blocks” on page 4-15.

Before you generate the report, add a requirement to a Stateflow chart to see
information that the requirements report contains about Stateflow charts:

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Open the fuel rate controller subsystem.

3 Open the Microsoft Word requirements document:

matlabroot/toolbox/slvnv/rmidemos/fuelsys_req_docs/...
slvnvdemo_FuelSys_RequirementsSpecification.docx

4-7

4 Reviewing Requirements

4 Create a link from the control logic Stateflow chart to a location in this
document.

5 Keep the example model open, but close the requirements document.

To generate a default requirements report for the
slvnvdemo_fuelsys_officereq model:

1 Select Analysis > Requirements > Generate Report.

The Requirements Management Interface (RMI) searches through all the
blocks and subsystems in the model for associated requirements. The RMI
generates and displays a complete report in HTML format.

The report is saved with the default name, model_name_requirements.html.
If you generate a subsequent report on the same model, the new report file
overwrites any earlier report file.

The report contains the following content:

• “Table of Contents” on page 4-8

• “List of Tables” on page 4-9

• “Model Information” on page 4-10

• “Documents Summary” on page 4-10

• “System” on page 4-11

• “Chart” on page 4-14

Table of Contents
The Table of Contents lists the major sections of the report. There is one
System section for the top-level model and one System section for each
subsystem, Model block, or Stateflow chart.

Click a link to view information about a specific section of the model.

4-8

Create and Customize Requirements Report

List of Tables
The List of Tables includes links to each table in the report.

4-9

4 Reviewing Requirements

Model Information
TheModel Information contains general information about the model, such
as when the model was created and when the model was last modified.

Documents Summary
The Documents Summary section lists all the requirements documents to
which objects in the slvnvdemo_fuelsys_officereq model link, along with
some additional information about each document.

• ID— The ID. In this example, DOC1, DOC2, DOC3, and DOC4 are short
names for the requirements documents linked from this model.

4-10

Create and Customize Requirements Report

Before you generate a report, in the Settings dialog box, on the Reports
tab, if you select User document IDs in requirements tables, links with
these short names are included throughout the report when referring to a
requirements document. When you click a short name link in a report, the
requirements document associated with that document ID opens.

When your requirements documents have long path names that can clutter
the report, select the User document IDs in requirements tables
option. This option is disabled by default, as you can see in the examples
in this section.

• Document paths stored in the model — Click this link to open the
requirements document in its native application.

• Last modified— The date the requirements document was last modified.

• # links— The total number of links to a requirements document.

System
Each System section includes:

• An image of the model or model object. The objects with requirements
are highlighted.

4-11

4 Reviewing Requirements

• A list of requirements associated with the model or model object. In
this example, click the target document name to open the requirements
document associated with the slvnvdemo_fuelsys_officereq model.

• A list of blocks in the top-level model that have requirements. In this
example, only the MAP sensor block has a requirement at the top level.

4-12

Create and Customize Requirements Report

Click the link next to Target: to open the requirements document
associated with the MAP sensor block.

The preceding table does not include these blocks in the top-level model
because:

- The fuel rate controller and engine gas dynamics subsystems are in
dedicated chapters of the report.

- The report lists Signal Builder blocks separately, in this example, in
Table 3.3.

• A list of requirements associated with each signal group in any Signal
Builder block, and a graphic of that signal group. In this example, the Test
inputs Signal Builder block in the top-level model has one signal group that
has a requirement link. Click the link under Target (document name
and location ID) to open the requirements document associated with this
signal group in the Test inputs block.

4-13

4 Reviewing Requirements

Chart
Each Chart section reports on requirements in Stateflow charts, and includes:

• A graphic of the Stateflow chart that identifies each state.

• A list of elements that have requirements.

To navigate to the requirements document associated with a chart element,
click the link next to Target.

4-14

Create and Customize Requirements Report

Report for Requirements in Model Blocks
If your model contains Model blocks that reference external models, the
default report does not include information about requirements in the
referenced models. To generate a report that includes requirements
information for referenced models, you must have a license for the Simulink
Report Generator™ software. The report includes the same information and
graphics for referenced models as it does for the top-level model.

If you have a Simulink Report Generator license, before generating a
requirements report, take the following steps:

1 Open the model for which you want to create a requirements report. This
workflow uses the example model slvnvdemo_fuelsys_officereq.

2 To open the template for the default requirements report, at the MATLAB
command prompt, enter:

setedit requirements

4-15

4 Reviewing Requirements

3 In the Simulink Report Generator software window, in the far-left pane,
click the Model Loop component.

4 On the far-right pane, locate theModel reference field. If you cannot see
the drop-down arrow for that field, expand the pane.

5 In the Model reference field drop-down list, select Follow all model
reference blocks.

6 To generate a requirements report for the open model that includes
information about referenced models, click the Report icon .

4-16

Create and Customize Requirements Report

Customize Requirements Report
The Requirements Management Interface (RMI) uses the Simulink Report
Generator software to generate the requirements report. You can customize
the requirements report using the RMI or the Simulink Report Generator
software:

• “Customize Requirements Report Using the RMI Settings” on page 4-17

• “Customize Requirements Report Using Simulink® Report Generator™”
on page 4-21

Customize Requirements Report Using the RMI Settings
There are several options for customizing a requirements report using the
Requirements Settings dialog box.

4-17

4 Reviewing Requirements

On the Report tab, select options that specify the contents that you want
in the report.

Requirements Settings Report
Option

Description

Highlight the model before
generating report

Enables highlighting of Simulink
objects with requirements in the
report graphics.

Show user tags for each reported
link

Lists the user tags, if any, for each
reported link.

Use document IDs in
requirements tables

Uses a document ID, if available,
instead of a path name in the tables
of the requirements report. This
capability prevents long path names
to requirements documents from
cluttering the report tables.

Report objects with no links to
requirements

Includes lists of model objects that
have no requirements.

Include details from linked
documents

Includes additional content from
linked requirements. The following
requirements documents are
supported:

• Microsoft Word

• Microsoft Excel

• IBM Rational DOORS

4-18

Create and Customize Requirements Report

Requirements Settings Report
Option

Description

Include links to Simulink objects Includes links from the report to
objects in Simulink.

Use internal HTTP server to
support navigation from system
browsers

Specifies use of internal MATLAB
HTTP server for navigation from
generated report to documents and
model objects. By selecting this
setting, this navigation is available
from system browsers as long as the
MATLAB internal HTTP server is
active on your local host. To start
the internal HTTP server, at the
MATLAB command prompt, type
rmi('httpLink').

To see how these options affect the content of the report:

1 Open the slvnvdemo_fuelsys_officereq model:

slvnvdemo_fuelsys_officereq

2 In the model window, select Analysis > Requirements > Settings.

3 In the Requirements Settings dialog box, click the Report tab.

4 For this example, selectHighlight the model before generating report.

When you select this option, before generating the report, the graphics of
the model that are included in the report are highlighted so that you can
easily see which objects have requirements.

5 To close the Requirements Settings dialog box, click Close.

6 Generate a requirements report by selecting
Analysis > Requirements > Generate Report.

The requirements report opens in a browser window so that you can review
the content of the report.

4-19

4 Reviewing Requirements

7 If you do not want to overwrite the current report when you regenerate
the requirements report, rename the HTML file, for example,
slvnvdemo_fuelsys_officereq_requirements_old.html.

The default report file name is model_name_requirements.html.

8 In the model window, select Analysis > Requirements > Settings.

9 On the Report tab, select:

• Show user tags for each reported link — The report lists the user
tags (if any) associated with each requirement.

• Include details from linked documents — The report includes
additional details for requirements in the following types of requirements
documents.

Requirements Document
Format

Includes in the Report

Microsoft Word Full text of the paragraph or subsection
of the requirement, including tables.

Microsoft Excel If the target requirement is a group of
cells, the report includes all those cells
as a table. If the target requirement is
one cell, the report includes that cell
and all the cells in that row to the right
of the target cell.

IBM Rational DOORS By default, the report includes:

– DOORS Object Heading

– DOORS Object Text

– All other attributes except Created
Thru, attributes with empty string
values, and system attributes that
are false.

Use the RptgenRMI.doorsAttribs
function to include or exclude specific
attributes or groups of attributes.

4-20

Create and Customize Requirements Report

10 Close the Requirements Settings dialog box.

11 Generate a new requirements report by selecting
Analysis > Requirements > Generate Report.

12 Compare this new report to the report that you renamed in step 7 on page
4-20:

• User tags associated with requirements links are included.

• Details from the requirement content are included as specified in step
9 on page 4-20.

13 When you are done reviewing the report, close the report and the model.

To see an example of including details in the requirements report, enter the
following command at the MATLAB command prompt:

slvnvdemo_powerwindow_report

Customize Requirements Report Using Simulink Report
Generator
If you have a license for the Simulink Report Generator software, you can
further modify the default requirements report.

At the MATLAB command prompt, enter the following command:

setedit requirements

The Report Explorer GUI opens the requirements report template that the
RMI uses when generating a requirements report. The report template
contains Simulink Report Generator components that define the structure
of the requirements report.

If you click a component in the middle pane, the options that you can specify
for that component appear in the right-hand pane. For detailed information
about using a particular component to customize your report, click Help at
the bottom of the right-hand pane.

4-21

4 Reviewing Requirements

In addition to the standard report components, Simulink Report Generator
provides components specific to the RMI in the Requirements Management
Interface category.

Simulink Report Generator
Component

Report Information

Missing Requirements Block
Loop

Applies all child components to
blocks that have no requirements

Missing Requirements System
Loop

Applies all child components to
systems that have no requirements

Requirements Block Loop Applies all child components to
blocks that have requirements

Requirements Documents Table Inserts a table that lists
requirements documents

Requirements Signal Loop Applies all child components to
signal groups with requirements

Requirements Summary Table Inserts a property table that lists
requirements information for blocks
with associated requirements

Requirements System Loop Applies all child components to
systems with requirements

Requirements Table Inserts a table that lists system and
subsystem requirements

To customize the requirements report, you can:

• Add or delete components.

• Move components up or down in the report hierarchy.

• Customize components to specify how the report presents certain
information.

For more information, see the Simulink Report Generator documentation.

4-22

Create and Customize Requirements Report

Generate Requirements Reports Using Simulink
When you have a model open in Simulink, the Model Editor provides two
options for creating requirements reports:

• “System Design Description Report” on page 4-23

• “Design Requirements Report” on page 4-24

System Design Description Report
The System Design Description report describes a system design represented
by the current Simulink model.

You can use the System Design Description report to:

• Review a system design without having the model open.

• Generate summary and detailed descriptions of the design.

• Assess compliance with design requirements.

• Archive the system design in a format independent of the modeling
environment.

• Build a customized version of the report using the Simulink Report
Generator software.

To generate a System Design Description report that includes requirements
information:

1 Open the model for which you want to create a report.

2 Select File > Reports > System Design Description.

3 In the Design Description dialog box, select Requirements traceability.

4 Select any other options that you want for this report.

5 Click Generate.

As the software is generating the report, the status appears in the
MATLAB command window.

4-23

4 Reviewing Requirements

The report name is the model name, followed by a numeral, followed by the
extension that reflects the document type (.pdf, .html, etc.).

If your model has linked requirements, the report includes a chapter,
Requirements Traceability, that includes:

• Lists of model objects that have requirements with hyperlinks to display
the objects

• Images of each subsystem, highlighting model objects with requirements

Design Requirements Report
In the Model Editor, the menu option File > Reports > System
Requirements creates a requirements report, as described in “Create
Default Requirements Report” on page 4-7. This menu option is equivalent to
Analysis > Requirements > Generate Report.

To specify options for the report, select
Analysis > Requirements > Settings. Before generating the report, on the
Report tab, set the options that you want. For detailed information about
these options, see “Customize Requirements Report” on page 4-17.

4-24

Filter Requirements with User Tags

Filter Requirements with User Tags

In this section...

“User Tags and Requirements Filtering” on page 4-25

“Apply a User Tag to a Requirement” on page 4-25

“Filter, Highlight, and Report with User Tags” on page 4-27

“Apply User Tags During Selection-Based Linking” on page 4-28

“Configure Requirements Filtering” on page 4-30

User Tags and Requirements Filtering
User tags are user-defined keywords that you associate with specific
requirements. With user tags, you can highlight a model or generate a
requirements report for a model in the following ways:

• Highlight or report only those requirements that have a specific user tag.

• Highlight or report only those requirements that have one of several user
tags.

• Do not highlight and report requirements that have a specific user tag.

Apply a User Tag to a Requirement
To apply one or more user tags to a newly created requirement:

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Open the fuel rate controller subsystem.

3 To open the requirements document, right-click the Airflow calculation
subsystem and select Requirements > Edit/Add Links.

The Requirements dialog box opens with the details about the requirement
that you created.

4-25

4 Reviewing Requirements

4 In the User tag field, enter one or more keywords, separated by commas,
that the RMI can use to filter requirements. In this example, after design,
enter a comma, followed by the user tag test to specify a second user tag
for this requirement.

User tags:

• Are not case sensitive.

• Can consist of multiple words. For example, if you enter design
requirement, the entire phrase constitutes the user tag. Separate user
tags with commas.

4-26

Filter Requirements with User Tags

5 Click Apply or OK to save the changes.

Filter, Highlight, and Report with User Tags
The slvnvdemo_fuelsys_officereq model includes several requirements
with the user tag design. This section describes how to highlight only those
model objects that have the user tag, test.

1 In the Simulink Editor, remove highlighting from the
slvnvdemo_fuelsys_officereq model by selecting
Analysis > Requirements > Unhighlight model.

2 Select Analysis > Requirements > Settings.

3 In the Requirements Settings dialog box, click the Filters tab.

4-27

4 Reviewing Requirements

4 To enable filtering with user tags, click the Filter links by user tags
when highlighting and reporting requirements option.

5 To include only those requirements that have the user tag, test, enter
test in the Include links with any of these tags field.

6 Click Close.

7 In the Simulink Editor, select Analysis > Requirements > Highlight
model.

The RMI highlights only those model objects whose requirements have the
user tag test, for example, the MAP sensor.

8 Reopen the Requirements Settings dialog box to the Filters tab.

9 In the Include links with any of these tags field, delete test. In the
Exclude links with any of these tags field, add test.

In the model, the highlighting changes to exclude objects whose
requirements have the test user tag. The MAP sensor and Test inputs
blocks are no longer highlighted.

10 In the Simulink Editor, select Analysis > Requirements > Generate
Report.

The report does not include information about objects whose requirements
have the test user tag.

Apply User Tags During Selection-Based Linking
When creating a succession of requirements links, you can apply the
same user tags to all links automatically. This capability, also known as
selection-based linking, is available only when you are creating links to
selected objects in the requirements documents.

When creating selection-based links, specify one or more user tags to apply
to requirements:

1 In the Model Editor, select Analysis > Requirements > Settings.

2 Select the Selection Linking tab.

4-28

Filter Requirements with User Tags

3 In the Apply this user tag to new links field, enter one or more user
tags, separated by commas.

The RMI applies these user tags to all new selection-based requirements
links that you create.

4 Click Close to close the Requirements Settings dialog box.

5 In a requirements document, select the specific requirement text.

6 Right-click a model object and select Requirements.

The selection-based linking options specify which user tags the RMI applies
to the link that you create. In the following example, you can apply the
user tags design, general, and reqtslink to the link that you create to
your selected text.

4-29

4 Reviewing Requirements

Configure Requirements Filtering
In the Requirements Settings dialog box, on the Filters tab, are the following
options for filtering requirements in a model.

Option Description

Filter links by user tags when
highlighting and reporting
requirements

Enables filtering for highlighting
and reporting, based on specified
user tags.

Include links with any of these
tags

Includes information about all
requirements that have any of
the specified user tags. Separate
multiple user tags with commas.

Exclude links with any of these
tags

Excludes information about all
requirements that have any of
the specified user tags. Separate
multiple user tags with commas or
spaces.

Apply same filters in context
menus

Disables link labels in context
menus if any of the specified filters
are satisfied, for example, if a
requirement has a designated user
tag.

4-30

Filter Requirements with User Tags

Option Description

Apply same filters in consistency
checking

Includes or excludes requirements
with specified user tags when
running a consistency check
between a model and its associated
requirements documents.

Under Link type filters, Disable
DOORS surrogate item links in
context menus

Disables links to IBM Rational
DOORS surrogate items from the
context menus when you right-click
a model object. This option does not
depend on current user tag filters.

4-31

4 Reviewing Requirements

4-32

5

Requirements Links
Maintenance

• “Validation of Requirements Links” on page 5-2

• “Validate Requirements Links in a Model” on page 5-4

• “Validate Requirements Links in a Requirements Document” on page 5-11

• “Document Path Storage” on page 5-15

• “Delete Requirements Links from Simulink Objects” on page 5-17

• “Requirements Links for Library Blocks and Reference Blocks” on page 5-19

5 Requirements Links Maintenance

Validation of Requirements Links
Requirements links in a model can become outdated when requirements
change over time. Similarly, links in requirements documents may become
invalid when your Simulink model changes, for example, when the model,
or objects in the model, are renamed, moved, or deleted. The Simulink
Verification and Validation software provides tools that allow you to detect
and resolve these problems in the model or in the requirements document.

In this section...

“When to Check Links in a Requirements Document” on page 5-2

“How the rmi Function Checks a Requirements Document” on page 5-3

When to Check Links in a Requirements Document
When you enable Modify destination for bi-directional linking and
create a link between a requirement and a Simulink model object, the RMI
software inserts a navigation control into your requirements document. These
links may become invalid if your model changes.

To check these links, the 'checkDoc' option of the rmi function reviews a
requirements document to verify that all the navigation controls represent
valid links to model objects. The checkDoc command can check the following
types of requirements documents:

• Microsoft Word

• Microsoft Excel

• IBM Rational DOORS

The rmi function only checks requirements documents that contain navigation
controls; to check links in your Simulink model, see “Validate Requirements
Links in a Model” on page 5-4.

5-2

Validation of Requirements Links

Note For more information about inserting navigation controls in
requirements documents, see:

• “Insert Navigation Objects in Microsoft Office Requirements Documents”
on page 7-13

• “Insert Navigation Objects into DOORS Requirements” on page 7-6

How the rmi Function Checks a Requirements
Document
rmi performs the following actions:

• Locates all links to Simulink objects in the specified requirements
document.

• Checks each link to verify that the target object is present in a Simulink
model. If the target object is present, rmi checks that the link label matches
the target object.

• Modifies the navigation controls in the requirements document to identify
any detected problems. This allows you to see invalid links at a glance:

- Valid link:

- Invalid link:

5-3

5 Requirements Links Maintenance

Validate Requirements Links in a Model

In this section...

“Check Requirements Links with the Model Advisor” on page 5-4

“Fix Invalid Requirements Links Detected by the Model Advisor” on page
5-7

Check Requirements Links with the Model Advisor
To make sure that every requirements link in your Simulink model has a valid
target in a requirements document, run the Model Advisor Requirements
consistency checks:

1 Open the example model:

slvnvdemo_fuelsys_officereq

2 Open the Model Advisor to run a consistency check by selecting
Analysis > Requirements > Check Consistency.

In the Requirement consistency checking category, all the checks are
selected. For this tutorial, keep all the checks selected.

These checks identify the following problems with your model requirements.

5-4

Validate Requirements Links in a Model

Consistency Check Problem Identified

Identify requirement links with missing
documents

The Model Advisor cannot find the
requirements document. This might indicate
a problem with the path to the requirements
document.

Identify requirement links that specify
invalid locations within documents

The Model Advisor cannot find the designated
location for the requirement. This check is
implemented for:
• Microsoft Word documents

• Microsoft Excel documents

• IBM Rational DOORS documents

• Simulink objects

Identify selection-based links having
description fields that do not match their
requirements document text

The Description field for the link does
not match the requirements document text.
When you create selection-based links, the
Requirements Management Interface (RMI)
saves the selected text in the link Description
field. This check is implemented for:

• Microsoft Word documents

• Microsoft Excel documents

• IBM Rational DOORS documents

• Simulink objects

Identify requirement links with path type
inconsistent with preferences

The path to the requirements document does
not match the Document file reference
field in the Requirements Settings dialog box
Selection Linking tab. This might indicate
a problem with the path to the requirements
document.

On Linux® systems, this check is named
Identify requirement links with absolute
path type. The check reports a warning for
each requirements links that uses an absolute
path.

5-5

5 Requirements Links Maintenance

Consistency Check Problem Identified

Note For information about how the RMI
resolves the path to the requirements
document, see “Document Path Storage” on
page 5-15.

The Model Advisor checks to see if any applications that have link targets
are running:

• If your model has links to Microsoft Word or Microsoft Excel documents,
the consistency check requires that you close all instances of those
applications. If you have one of these applications open, it displays a
warning and does not continue the checks. The consistency checks must
verify up-to-date stored copies of the requirements documents.

• If your model has links to DOORS requirements, you must be logged
in to the DOORS software. Your DOORS database must include the
module that contains the target requirements.

3 For this tutorial, make sure that you close both Microsoft Word and
Microsoft Excel.

4 Click Run Selected Checks.

After the check is complete:

• The green circles with the check mark indicate that two checks passed.

• The yellow triangles with the exclamation point indicate that two checks
generated warnings.

5-6

Validate Requirements Links in a Model

The right-hand pane shows that two checks passed and two checks had
warnings. The pane includes a link to the HTML report.

Keep the Model Advisor open. The next section describes how to interpret
and fix the inconsistent links.

Note To step through an example that uses the Model Advisor to check
requirements links in an IBM Rational DOORS database, run the Managing
Requirements for Fault-Tolerant Fuel Control System (IBM Rational DOORS)
example in the MATLAB command prompt.

Fix Invalid Requirements Links Detected by the Model
Advisor
In “Check Requirements Links with the Model Advisor” on page
5-4, three requirements consistency checks generate warnings in the
slvnvdemo_fuelsys_officereq model.

Resolve Warning: Identify requirement links that specify
invalid locations within documents
To fix the warning about attempting to link to an invalid location in a
requirements document:

1 In the Model Advisor, select Identify requirement links that specify
invalid locations within documents to display the description of the
warning.

5-7

5 Requirements Links Maintenance

This check identifies a link that specifies a location that
does not exist in the Microsoft Word requirements document,
slvnvdemo_FuelSys_DesignDescription.docx. The link originates in the
Terminator1 block. In this example, the target location in the requirements
document was deleted after the requirement was created.

2 Get more information about this link:

a To navigate to the Terminator1 block, under Block, click the hyperlink.

b To open the Requirements dialog box for this link, underRequirements,
click the hyperlink.

3 To fix the problem from the Requirements dialog box, do one of the
following:

• In the Location field, specify a valid location in the requirements
document.

• Delete the requirements link by selecting the link and clicking Delete.

4 In the Model Advisor, select the Requirement consistency checking
category of checks.

5 Click Run Selected Checks again, and verify that the warning no longer
occurs.

5-8

Validate Requirements Links in a Model

Resolve Warning: Identify selection-based links having
description fields that do not match their requirements
document text
To fix the warnings about the Description field not matching the
requirements document text:

1 In the Model Advisor, click Identify selection-based links having
description fields that do not match their requirements document
text to display the description of the warning.

5-9

5 Requirements Links Maintenance

The first message indicated that the model contains a link to a bookmark
named Simulink_requirement_item_7 in the requirements document
that does not exist.

In addition, this check identified the following mismatching text between
the requirements blocks and the requirements document:

• The Description field in the Test inputs Signal Builder block link is
Normal mode of operation. The requirement text is The simulation
is run with a throttle input that ramps from 10 to 20 degrees over
a period of two seconds, then back to 10 degrees over the next
two seconds. This cycle repeats continuously while the engine is
held at a constant speed.

• The Description field in the MAP Estimate block link
is Manifold pressure failure. The requirement text in
slvnvdemo_FuelSys_DesignDescription.docx is Manifold pressure
failure mode.

2 Get more information about this link:

a To navigate to a block, under Block, click the hyperlink.

b To open the Requirements dialog box for this link, under Current
Description, click the hyperlink.

3 Fix this problem in one of two ways:

• In the Model Advisor, click Update. This action automatically updates
the Description field for that link so that it matches the requirement.

• In the Requirements dialog box, manually edit the link from the block so
that the Description field matches the selected requirements text.

4 In the Model Advisor, select the Requirement consistency checking
category of checks.

5 Click Run Selected Checks again, and verify that the warning no longer
occurs.

5-10

Validate Requirements Links in a Requirements Document

Validate Requirements Links in a Requirements Document

In this section...

“Check Links in a Requirements Document” on page 5-11

“When Multiple Objects Have Links to the Same Requirement” on page 5-12

“Fix Invalid Links in a Requirements Document” on page 5-13

Check Links in a Requirements Document
To check the links in a requirements document:

1 At the MATLAB command prompt, enter

rmi('checkdoc', docName)

docName is a string that represents one of the following:

• Module ID for a DOORS requirements document

• Full path name for a Microsoft Word requirements document

• Full path name for a Microsoft Excel requirements document

The rmi function creates and displays an HTML report that lists all
requirements links in the document.

The report highlights invalid links in red. For each invalid link, the report
includes brief details about the problem and a hyperlink to the invalid
link in the requirements document. The report groups together links that
have the same problem.

2 Double-click the hyperlink under Document content to open the
requirements document at the invalid link.

The navigation controls for the invalid link has a different appearance than
the navigation controls for the valid links.

3 When there are invalid links in your requirements document, you have
the following options:

5-11

5 Requirements Links Maintenance

If you want to... Do the following...

Fix the invalid links Follow the instructions in “Fix
Invalid Links in a Requirements
Document” on page 5-13.

Keep the changes to the navigation
controls without fixing the invalid
links

Save the requirements document.

Ignore the invalid links Close the requirements document
without saving it.

When Multiple Objects Have Links to the Same
Requirement
When you link multiple objects to the same requirement, as described in
“Link Multiple Model Objects to a Requirements Document” on page 2-20,
only one navigation object is inserted into the requirements document. When
you double-click that navigation object, all of the linked model objects are
highlighted.

If you check the requirements document using the 'checkdoc' option of the
rmi function and the check detects a navigation object that points to multiple
objects, the check stops and displays the following dialog box.

You have two options:

• If you click Yes, or you close this dialog box, the RMI creates additional
navigation objects, one for each model object that links to that requirement.

5-12

Validate Requirements Links in a Requirements Document

The document check continues, but the RMI does not recheck that
navigation; the report only shows one link for that requirement. To rerun
the check so that all requirements are checked, at the top of the report,
click Refresh.

• If you click No, the document check continues, and the report identifies
that navigation object as a broken link.

Fix Invalid Links in a Requirements Document
Using the report that the rmi function creates, you may be able to fix the
invalid links in your requirements document.

In the following example, rmi cannot locate the model specified in two links.

To fix invalid links:

1 In the report, under Document content, click the hyperlink associated
with the invalid requirement link.

The requirements document opens with the requirement text highlighted.

2 In the requirements document, depending on the document format, take
these steps:

• In DOORS:

a Select the navigation control for an invalid link.

b Select MATLAB > Select item.

• In Microsoft Word, double-click the navigation control.

5-13

5 Requirements Links Maintenance

A dialog box opens that allows you to fix, reset, or ignore all the invalid
links with a given problem.

3 Click one of the following options.

To... Click...

Navigate to and select a new target model
or new target objects for these broken links.

Fix all

Reset the navigation controls for these
invalid links to their original state, the
state before you checked the requirements
document.

Reset all

Make no changes to the requirements
document. Any modifications rmi made
to the navigation controls remain in the
requirements document.

Cancel

4 Save the requirements document to preserve the changes made by the
rmi function.

5-14

Document Path Storage

Document Path Storage
When you create a requirements link, the RMI stores the location of the
requirements document with the link. If you use selection-based linking or
browse to select a requirements document, the RMI stores the document
location as specified by the Document file reference option on the
Requirements Settings dialog box, Selection Linking tab. The available
settings are:

• Absolute path

• Path relative to current folder

• Path relative to model folder

• Filename only (on MATLAB path)

You can also manually enter an absolute or relative path for the document
location. A relative path can be a partial path or no path at all, but you must
specify the file name of the requirements document. If you use a relative
path, the document is not constrained to a single location in the file system.
With a relative path, the RMI resolves the exact location of the requirements
document in this order:

1 The software attempts to resolve the path relative to the current MATLAB
folder.

2 When there is no path specification and the document is not in the current
folder, the software uses the MATLAB search path to locate the file.

3 If the RMI cannot locate the document relative to the current folder or the
MATLAB search path, the RMI resolves the path relative to the model
file folder.

The following examples illustrate the procedure for locating a requirements
document.

5-15

5 Requirements Links Maintenance

Relative (Partial) Path Example

Current MATLAB folder C:\work\scratch

Model file C:\work\models\controllers\pid.mdl

Document link ..\reqs\pid.html

Documents searched for
(in order)

C:\work\reqs\pid.html
C:\work\models\reqs\pid.html

Relative (No) Path Example

Current MATLAB folder C:\work\scratch

Model file C:\work\models\controllers\pid.mdl

Requirements document pid.html

Documents searched for
(in order)

C:\work\scratch\pid.html
<MATLAB path dir>\pid.html
C:\work\models\controllers\pid.html

Absolute Path Example

Current MATLAB folder C:\work\scratch

Model file C:\work\models\controllers\pid.mdl

Requirements document C:\work\reqs\pid.html

Documents searched for C:\work\reqs\pid.html

5-16

Delete Requirements Links from Simulink® Objects

Delete Requirements Links from Simulink Objects

In this section...

“Delete a Single Link from a Simulink Object” on page 5-17

“Delete All Links from a Simulink Object” on page 5-17

“Delete All Links from Multiple Simulink Objects” on page 5-18

Delete a Single Link from a Simulink Object
If you have an obsolete link to a requirement, delete it from the model object.

To delete a single link to a requirement from a Simulink model object:

1 Right-click a model object and select Requirements > Edit/Add Links.

2 In the top-most pane of the Requirements dialog box, select the link that
you want to delete.

3 Click Delete.

4 Click Apply or OK to complete the deletion.

Delete All Links from a Simulink Object
To delete all links to requirements from a Simulink model object:

1 Right-click the model object and select Requirements > Delete All Links

2 Click OK to confirm the deletion.

This action deletes all requirements at the top level of the object. For
example, if you delete requirements for a subsystem, this action does not
delete any requirements for objects inside the subsystem; it only deletes
requirements for the subsystem itself. To delete requirements for child
objects inside a subsystem, Model block, or Stateflow chart, you must
navigate to each child object and perform these steps for each object from
which you want to delete requirements.

5-17

5 Requirements Links Maintenance

Delete All Links from Multiple Simulink Objects
To delete all requirements links from a group of Simulink model objects in the
same model diagram or Stateflow chart:

1 Select the model objects whose requirements links you want to delete.

2 Right-click one of the objects and select Requirements > Delete All.

3 Click OK to confirm the deletion.

This action deletes all requirements at the top level of each object. It does
not delete requirements for child objects inside subsystems, Model blocks,
or Stateflow charts.

5-18

Requirements Links for Library Blocks and Reference Blocks

Requirements Links for Library Blocks and Reference
Blocks

In this section...

“Introduction to Library Blocks and Reference Blocks” on page 5-19

“Library Blocks and Requirements” on page 5-19

“Copy Library Blocks with Requirements” on page 5-20

“Manage Requirements on Reference Blocks” on page 5-20

“Manage Requirements Inside Reference Blocks” on page 5-21

“Links from Requirements to Library Blocks” on page 5-24

Introduction to Library Blocks and Reference Blocks
Simulink allows you to create your own block libraries. If you create a block
library, you can reuse the functionality of a block, subsystem, or Stateflow
atomic subchart in multiple models.

When you copy a library block to a Simulink model, the new block is called
a reference block. You can create several instances of this library block in
one or more models.

The reference block is linked to the library block using a library link. If
you change a library block, any reference block that is linked to the library
block is updated with those changes when you open or update the model that
contains the reference block.

Note For more information about reference blocks and library links, see
“Libraries” in the Simulink documentation.

Library Blocks and Requirements
Library blocks themselves can have links to requirements. In addition, if
a library block is a subsystem or atomic subchart, the objects inside the
library blocks can have library links. You use the Requirements Management

5-19

5 Requirements Links Maintenance

Interface (RMI) to create and manage requirements links in libraries and in
models.

The following sections describe how to manage requirements links on and
inside library blocks and reference blocks.

Copy Library Blocks with Requirements
When you copy a library subsystem or masked block to a model, you can
highlight, view and navigate requirements links on the library block and on
objects inside the library block. However, those links are not associated with
that model. The links are stored with the library, not with the model.

You cannot add, modify, or delete requirements links on the library block from
the context of the reference block. If you disable the link from the reference
block to the library block, you can modify requirements on objects that are
inside library blocks just as you can for other block attributes when a library
link has been disabled.

Manage Requirements on Reference Blocks
You use the RMI to manage requirements links on a reference block just like
any other model object. You can view and navigate both local and library
requirements on a reference block.

For example, in the following graphic, right-clicking the reference block
shows that the reference block has locally created requirements links and
requirements links on the library block:

• Locally created requirements links — Can be modified or deleted without
changing the library block:

- Manifold absolute pressure sensor

- Mass airflow estimation

• Requirements links on the library block — Cannot be modified or deleted
from the context of the reference block:

- Speed sensor

- Throttle sensor

5-20

Requirements Links for Library Blocks and Reference Blocks

- Oxygen sensor

Manage Requirements Inside Reference Blocks
If your library block is a subsystem or a Stateflow atomic subchart, you can
create requirements links on objects inside the subsystem or subchart. If you
disable the link from the reference block to the library, you can add, modify, or
delete requirements links on objects inside a reference block. Once you have
disabled the link, the RMI treats those links as locally created links.

After you make changes to requirements links on objects inside a reference
block, you can resolve the link so that those changes are pushed to the library
block. The next time you create an instance of that library block, the changes
you made are copied to the new instance of the library block.

The workflow for creating a requirement link on an object inside a reference
block is:

1 Within a library you have a subsystem S1. Drag S1 to a model, creating a
new subsystem. This subsystem is the reference block.

5-21

5 Requirements Links Maintenance

��

������	

���

������	

�� ������	
�
��

���������
�
��

���
��

2 Disable the library link between the reference block and the library block.
Keep the library loaded while you disable the link to maintain RMI data. To
disable the link, select the reference block and select Diagram > Library
Link > Disable Link.

3 Create a link from the object inside the reference block to the requirements
document.

��

�����
��

�����	�
���

������	

��

������������
����������

�����������������
�����������

������	
�
��

���������
�
��

���
��

Note When linking to a requirement from inside a reference block, you
can create links only in one direction: from the model to the requirements
document. The RMI does not support inserting navigation objects into
requirements documents for objects inside reference blocks.

5-22

Requirements Links for Library Blocks and Reference Blocks

4 Resolve the library link between the reference block and the library block:

a Select the reference block.

b Select Diagram > Library Link > Restore Link.

c In the Action column, click Push.

d Click OK to resolve the link to the library block and push the newly
added requirement to the object inside the library block.

When you resolve the library link between the library block and the
subsystem, Simulink pushes the new requirement link to the library
block S1. The following graphic shows the new link from inside the
library block S1 to the requirement.

������������
����������

�����������
��

�������

�����	

���

������	

��

������
�����������

������
�����������

���������
�
��

������	
�
��

���
��

Note If you see a message that the library is locked, you must unlock the
library before you can push the changes to the library block.

5 If you reuse library block S1, which now has an object with a requirement
link, in another model, the new subsystem contains an object that links
to that requirement.

5-23

5 Requirements Links Maintenance

������������
����������

������	����

�����������

��

�� ��

������	

���

������	

���

������
�����������

������
�����������

������
�����������

������	
�
��

���������
�
��

���������
�
��

���
�����
��

Links from Requirements to Library Blocks
If you have a requirement that links to a library block and you drag that
library block to a model, the requirement does not link to the reference block;
the requirement links only to the library block.

For example, consider the situation where you have established linking
between a library block (B1 in the following graphic) and a requirement in
both directions.

5-24

Requirements Links for Library Blocks and Reference Blocks

������������
����������

������	

�����������

��

���������������
�������������

������	
�
��

When you use library block B1 in a model, you can navigate from the reference
block to the requirement. However, the link from the requirement still points
only to library block B1, not to the reference block.

������������
����������

������	

�����������

��

��

������	

���

������
�����������

���������������
�������������

������	
�
��

���������
�
��

���

As discussed in the previous section, you can create requirements links on
objects inside instances of library block after disabling library links. However,
the RMI prohibits you from creating a link from the requirements document
to such an object because that link would become invalid when you restored
the library link.

5-25

5 Requirements Links Maintenance

5-26

6

IBM Rational DOORS
Surrogate Module
Synchronization

• “Synchronization with DOORS Surrogate Modules” on page 6-2

• “Advantages of Synchronizing Your Model with a Surrogate Module” on
page 6-4

• “Synchronize a Simulink Model to Create a Surrogate Module” on page 6-5

• “Create Links Between Surrogate Module and Formal Module in a DOORS
Database” on page 6-7

• “Customize DOORS Synchronization” on page 6-8

• “Resynchronize DOORS Surrogate Module to Reflect Model Changes” on
page 6-16

• “Navigate with the Surrogate Module” on page 6-18

6 IBM® Rational® DOORS® Surrogate Module Synchronization

Synchronization with DOORS Surrogate Modules
Synchronization is a user-initiated process that creates or updates a DOORS
surrogate module. A surrogate module is a DOORS formal module that is a
representation of a Simulink model hierarchy.

When you synchronize a model for the first time, the DOORS software creates
a surrogate module. The surrogate module contains a representation of
the model, depending on your synchronization settings. (To learn how to
customize the links and level of detail in the synchronization, see “Customize
DOORS Synchronization” on page 6-8.)

If you create or remove model objects or links, keep your surrogate module
up to date by resynchronizing. The updated surrogate module reflects any
changes in the requirements links since the previous synchronization.

Note The RMI and DOORS software both use the term object. In the RMI,
and in this document, the term object refers to a Simulink model or block, or
to a Stateflow chart or its contents.

In the DOORS software, object refers to numbered elements in modules. The
DOORS software assigns each of these objects a unique object ID. In this
document, these objects are referred to as DOORS objects.

You use standard DOORS capabilities to navigate between the Simulink
objects in the surrogate module and requirements in other formal modules.
The surrogate module facilitates navigation between the Simulink model
object and the requirements, as the following diagram illustrates.

6-2

Synchronization with DOORS® Surrogate Modules

200
202
203
204
205
206
207
208

1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.3

Model
Subsystem
Block
Block
Block
Subsystem
Block
Block

Object ID Block Name

D1
D2

D3

1
1.1

1.2

Requirement Name
Requirement text ...
...
...
Requirement text ...

Object ID

DOORS Formal Module(s) with Requirements

DOORS Surrogate Module

Objects in a Simulink Model

Requirement

Enter requirements in the DOORS formal
module and link them to objects in the
DOORS surrogate module, so you can
navigate from requirements to Simulink
objects.

A surrogate module is a representation
of a Simulink model hierarchy.

6-3

6 IBM® Rational® DOORS® Surrogate Module Synchronization

Advantages of Synchronizing Your Model with a Surrogate
Module

Synchronizing your Simulink model with a surrogate module offers the
following advantages:

• You can navigate from a requirement to a Simulink object without
modifying the requirements modules.

• You avoid cluttering your requirements modules with inserted navigation
objects.

• The DOORS database contains complete information about requirements
links. You can review requirements links and verify traceability, even if
the Simulink software is not running.

• You can use DOORS reporting features to analyze requirements coverage.

• You can separate the requirements tracking work from the Simulink model
developers’ work, as follows:

- Systems engineers can establish requirements links to models without
using the Simulink software.

- Model developers can capture the requirements information using
synchronization and store it with the model.

• You can resynchronize a model with a new surrogate module, updating any
model changes or specifying different synchronization options.

6-4

Synchronize a Simulink® Model to Create a Surrogate Module

Synchronize a Simulink Model to Create a Surrogate
Module

The first time that you synchronize your model with the DOORS software,
the DOORS software creates a surrogate module.

In this tutorial, you synchronize the sf_car model with the DOORS software.

Note Before you begin, make sure you know how to create links from a
Simulink model object to a requirement in a DOORS database. For a tutorial
on creating links to DOORS requirements, see “Link to Requirements in IBM
Rational DOORS Databases” on page 2-32.

1 To create a surrogate module, start the DOORS software and open a
project. If the DOORS software is not already running, start the DOORS
software and open a project.

2 Open the sf_car model.

3 Rename the model to sf_car_doors, and save the model in a writable
folder.

4 Create links to a DOORS formal module from two objects in sf_car_doors:

• The transmission subsystem

• The engine torque block inside the Engine subsystem

5 Save the changes to the model.

6 In the Simulink Editor, select Analysis > Requirements > Synchronize
with DOORS.

The DOORS synchronization settings dialog box opens.

7 For this tutorial, accept the default synchronization options.

The default option under Extra mapping additionally to objects with
links, None, creates objects in the surrogate module only for the model and
any model objects with links to DOORS requirements.

6-5

6 IBM® Rational® DOORS® Surrogate Module Synchronization

Note For more information about the synchronization options, see
“Customize DOORS Synchronization” on page 6-8.

8 Click Synchronize to create and open a surrogate module for all DOORS
requirements that have links to objects in the sf_car_doors model.

After synchronization with the None option, the surrogate module, a formal
module named sf_car_doors, contains:

• A top-level object for the model (sf_car_doors)

• Objects that represent model objects with links to DOORS requirements
(transmission, engine torque), and their parent objects (Engine).

9 Save the surrogate module and the model.

6-6

Create Links Between Surrogate Module and Formal Module in a DOORS® Database

Create Links Between Surrogate Module and Formal
Module in a DOORS Database

The surrogate module is the interface between the DOORS formal module
that contains your requirements and the Simulink model. To establish links
between the surrogate module and the requirements module, copy the link
information from the model to the surrogate module:

1 Open the sf_car_doors model.

2 In the Simulink Editor, select Analysis > Requirements > Synchronize
with DOORS.

3 In the DOORS synchronization settings dialog box, select two options:

• Update links during synchronization

• from Simulink to DOORS.

4 Click Synchronize.

The RMI creates links from the DOORS surrogate module to the formal
module. These links correspond to links from the Simulink model to the
formal module. In this example, the DOORS software copies the links from
the engine torque block and transmission subsystems to the formal module,
as indicated by the red triangles.

6-7

6 IBM® Rational® DOORS® Surrogate Module Synchronization

Customize DOORS Synchronization

In this section...

“DOORS Synchronization Settings” on page 6-8

“Resynchronize a Model with a Different Surrogate Module” on page 6-10

“Customize the Level of Detail in Synchronization” on page 6-11

“Resynchronize to Include All Simulink Objects” on page 6-12

DOORS Synchronization Settings
When you synchronize your Simulink model with a DOORS database, you can:

• Customize the level of detail for your surrogate module.

• Update links in the surrogate module or in the model to verify the
consistency of requirements links among the model, and the surrogate
and formal modules.

The DOORS synchronization settings dialog box provides the following
options during synchronization.

DOORS Settings Option Description

DOORS surrogate module path and name Specifies a unique DOORS path to a new or an
existing surrogate module.

For information about how the RMI resolves
the path to the requirements document, see
“Document Path Storage” on page 5-15.

Extra mapping additionally to objects
with links

Determines the completeness of the Simulink
model representation in the DOORS surrogate
module. None specifies synchronizing only
those Simulink objects that have linked
requirements, and their parent objects. For
more information about these synchronization
options, see “Customize the Level of Detail in
Synchronization” on page 6-11.

6-8

Customize DOORS® Synchronization

DOORS Settings Option Description

Update links during synchronization Specifies updating any unmatched links the
RMI encounters during synchronization, as
designated in the Copy unmatched links and
Delete unmatched links options.

Copy unmatched links During synchronization, selecting the following
options has the following results:

• from Simulink to DOORS: For links
between the model and the formal module,
the RMI creates matching links between the
DOORS surrogate and formal modules.

• from DOORS to Simulink: For links
between the DOORS surrogate and formal
modules, the RMI creates matching links
between the model and the DOORS modules.

Delete unmatched links During synchronization, selecting the following
options has the following results:

• Remove unmatched in DOORS: For links
between the formal and surrogate modules,
when there is not a corresponding link
between the model and the DOORS modules,
the RMI deletes the link in DOORS.

This option is available only if you select the
from Simulink to DOORS option.

• Remove unmatched in Simulink: For
links between the model and the DOORS
modules, when there is not a corresponding
link between the formal and surrogate
modules, the RMI deletes the link from the
model.

This option is available only if you select the
from DOORS to Simulink option.

6-9

6 IBM® Rational® DOORS® Surrogate Module Synchronization

DOORS Settings Option Description

Save DOORS surrogate module After the synchronization, saves changes to the
surrogate module and updates the version of
the surrogate module in the DOORS database.

Save Simulink model (recommended) After the synchronization, saves changes to
the model. If you use a version control system,
selecting this option changes the version of the
model.

Resynchronize a Model with a Different Surrogate
Module
You can synchronize the same Simulink model with a new DOORS surrogate
module. For example, you might want the surrogate module to contain only
objects that have requirements to DOORS, rather than all objects in the
model. In this case, you can change the synchronization options to reduce the
level of detail in the surrogate module:

1 In the DOORS synchronization settings dialog box, change the DOORS
surrogate module path and name to the path and name of the new
surrogate module in the DOORS database.

2 Specify a module with either a relative path (starting with ./) or a full
path (starting with /).

The software appends relative paths to the current DOORS project.
Absolute paths must specify a project and a module name.

When you synchronize a model, the RMI automatically updates the
DOORS surrogate module path and name with the actual full path.
The RMI saves the unique module ID with the module.

3 If you select a new module path or if you have renamed the surrogate
module, and you click Synchronize, the Requirements: Surrogate Module
Mismatch dialog box opens.

6-10

Customize DOORS® Synchronization

4 Click Continue to create a new surrogate module with the new path or
name.

Customize the Level of Detail in Synchronization
You can customize the level of detail in a surrogate module so that the module
reflects the full or partial Simulink model hierarchy.

In “Synchronize a Simulink Model to Create a Surrogate Module” on page
6-5, you synchronized the model with the Extra mapping additionally to
objects with links option set to None. As a result, the surrogate module
contains only Simulink objects that have requirement links, and their parent
objects. Additional synchronization options, described in this section, can
increase the level of surrogate detail. Increasing the level of surrogate detail
can slow down synchronization.

The Extra mapping additionally to objects with links option can have
one of the following values. Each subsequent option adds additional Simulink
objects to the surrogate module. You choose None to minimize the surrogate
size or Complete to create a full representation of your model. The Complete
option adds all Simulink objects to the surrogate module, creating a one-to-one
mapping of the Simulink model in the surrogate module. The intermediate
options provide more levels of detail.

Drop-Down List Option Description

None (Recommended for better
performance)

Maps only Simulink objects that have requirements links
and their parent objects to the surrogate module.

Minimal - Non-empty unmasked
subsystems and Stateflow charts

Adds all nonempty Stateflow charts and unmasked
Simulink subsystems to the surrogate module.

6-11

6 IBM® Rational® DOORS® Surrogate Module Synchronization

Drop-Down List Option Description

Moderate - Unmasked subsystems,
Stateflow charts, and
superstates

Adds Stateflow superstates to the surrogate module.

Average - Nontrivial Simulink
blocks, Stateflow charts and
states

Adds all Stateflow charts and states and Simulink
blocks, except for trivial blocks such as ports, bus objects,
and data-type converters, to the surrogate module.

Extensive - All unmasked
blocks, subsystems, states and
transitions

Adds all unmasked blocks, subsystems, states, and
transitions to the surrogate module.

Complete - All blocks,
subsystems, states and
transitions

Copies all blocks, subsystems, states, and transitions to
the surrogate module.

Resynchronize to Include All Simulink Objects
This tutorial shows how you can include all Simulink objects in the DOORS
surrogate module. Before you start these steps, make sure you have completed
the tutorials “Synchronize a Simulink Model to Create a Surrogate Module”
on page 6-5 and “Create Links Between Surrogate Module and Formal Module
in a DOORS Database” on page 6-7.

1 Open the sf_car_doors model that you synchronized in “Synchronize a
Simulink Model to Create a Surrogate Module” on page 6-5 and again in
“Create Links Between Surrogate Module and Formal Module in a DOORS
Database” on page 6-7.

2 In the Simulink Editor, select Analysis > Requirements > Synchronize
with DOORS.

The DOORS synchronization settings dialog box opens.

3 Resynchronize with the same surrogate module, making sure that the
DOORS surrogate module path and name specifies the surrogate
module path and name that you used in “Synchronize a Simulink Model to
Create a Surrogate Module” on page 6-5.

6-12

Customize DOORS® Synchronization

For information about how the RMI resolves the path to the requirements
document, see “Document Path Storage” on page 5-15.

4 Update the surrogate module to include all objects in your model. To do
this, under Extra mapping additionally to objects with links, from
the drop-down list, select Complete - All blocks, subsystems, states
and transitions.

5 Click Synchronize.

After synchronization, the DOORS surrogate module for the sf_car_doors
model opens with the updates. All Simulink objects and all Stateflow
objects in the sf_car_doors model are now mapped in the surrogate
module.

6-13

6 IBM® Rational® DOORS® Surrogate Module Synchronization

6 Scroll through the surrogate module. Notice that the objects with
requirements (the engine torque block and transmission subsystem) retain
their links to the DOORS formal module, as indicated by the red triangles.

7 Save the surrogate module.

Detailed Information About The Surrogate Module You Created
Notice the following information about the surrogate module that you created
in “Resynchronize to Include All Simulink Objects” on page 6-12:

6-14

Customize DOORS® Synchronization

• The name of the surrogate module is sf_car_doors, as you specified in the
DOORS synchronization settings dialog box.

• DOORS object headers are the names of the corresponding Simulink
objects.

• The Block Type column identifies each object as a particular block type
or a subsystem.

• If you delete a previously synchronized object from your Simulink model
and then resynchronize, the Block Deleted column reads true. Otherwise,
it reads false.

These objects are not deleted from the surrogate module. The DOORS
software retains these surrogate module objects so that the RMI can
recover these links if you later restore the model object.

• Each Simulink object has a unique ID in the surrogate module. For
example, the ID for the surrogate module object associated with the Mux
block in the preceding figure is 11.

• Before the complete synchronization, the surrogate module contained
the transmission subsystem, with an ID of 3. After the complete
synchronization, the transmission object retains its ID (3), but is listed
farther down in the surrogate module. This order reflects the model
hierarchy. The transmission object in the surrogate module retains the red
arrow that indicates that it links to a DOORS formal module object.

6-15

6 IBM® Rational® DOORS® Surrogate Module Synchronization

Resynchronize DOORS Surrogate Module to Reflect Model
Changes

If you change your model after synchronization, the RMI does not display a
warning message. If you want the surrogate module to reflect changes to the
Simulink model, resynchronize your model.

In this tutorial, you add a new block to the sf_car_doors model, and later
delete it, resynchronizing after each step:

1 In the sf_car_doors model, make a copy of the vehicle mph (yellow) &
throttle % Scope block and paste it into the model. The name of the new
Scope block is vehicle mph (yellow) & throttle %1.

2 Select Analysis > Requirements > Synchronize with DOORS.

3 In the DOORS synchronization settings dialog box, leave the Extra
mapping additionally to objects with links option set to Complete
- All blocks, subsystems, states, and transitions. Click
Synchronize.

After the synchronization, the surrogate module includes the new block.

4 In the sf_car_doors model, delete the newly added Scope block and
resynchronize.

The block that you delete appears at the bottom of the list of objects in the
surrogate module. Its entry in the Block Deleted column reads True.

6-16

Resynchronize DOORS® Surrogate Module to Reflect Model Changes

5 Delete the copied object (vehicle mph (yellow) & throttle %1 and
resynchronize the model.

6 Save the surrogate module.

7 Save the sf_car_doors model.

6-17

6 IBM® Rational® DOORS® Surrogate Module Synchronization

Navigate with the Surrogate Module

In this section...

“Navigate Between Requirements and the Surrogate Module in the DOORS
Database” on page 6-18

“Navigate Between DOORS Requirements and the Simulink Module via
the Surrogate Module” on page 6-19

Navigate Between Requirements and the Surrogate
Module in the DOORS Database
The surrogate module and the requirements in the formal module are both
in the DOORS database. When you synchronize your model, the DOORS
software creates links between the surrogate module objects and the
requirements in the DOORS database.

Navigating between the requirements and the surrogate module allows you
to review the requirements that have links to the model without starting
the Simulink software.

To navigate from the surrogate module transmission object to the requirement
in the formal module:

1 In the surrogate module object for the transmission subsystem, right-click
the right-facing red arrow.

2 Select the requirement name.

The formal module opens, at the Transmission Requirements object.

To navigate from the requirement in the formal module to the surrogate
module:

6-18

Navigate with the Surrogate Module

1 In the Transmission Requirements object in the formal module, right-click
the left-facing orange arrow.

2 Select the object name.

The surrogate module for sf_car_doors opens, at the object associated
with the transmission subsystem.

Navigate Between DOORS Requirements and the
Simulink Module via the Surrogate Module
You can create links that allow you to navigate from Simulink objects to
DOORS requirements and from DOORS requirements to the model. If you
synchronize your model, the surrogate module serves as an intermediary
for the navigation in both directions. The surrogate module allows you to
navigate in both directions even if you remove the direct link from the model
object to the DOORS formal module.

Navigate from a Simulink Object to a Requirement via the
Surrogate Module
To navigate from the transmission subsystem in the sf_car_doors model to a
requirement in the DOORS formal module:

1 In the sf_car_doors model, right-click the transmission subsystem and
select Requirements > 1. “DOORS Surrogate Item”. (The direct link
to the DOORS formal module is also available.)

The surrogate module opens, at the object associated with the transmission
subsystem.

6-19

6 IBM® Rational® DOORS® Surrogate Module Synchronization

2 To display the individual requirement, in the surrogate module, right-click
the right-facing red arrow and select the requirement.

The formal module opens, at Transmission Requirements.

Navigate from a Requirement to the Model via the Surrogate
Module
To navigate from the Transmission Requirements requirement in the formal
module to the transmission subsystem in the sf_car_doors model:

1 In the formal module, in the Transmission Requirements object,
right-click the left-facing orange arrow.

2 Select the path to the linked surrogate object: /sf_car
Project/sf_car_doors > 4. transmission.

The surrogate module opens, at the transmission object.

3 In the surrogate module, select MATLAB > Select item.

The linked object is highlighted in sf_car_doors.

6-20

7

Navigation from
Requirements Documents

• “IBM Rational DOORS” on page 7-2

• “Microsoft Office” on page 7-11

7 Navigation from Requirements Documents

IBM Rational DOORS

In this section...

“Why Add Navigation Objects to DOORS Requirements?” on page 7-2

“Configure Requirements Management Interface for DOORS Software”
on page 7-3

“Enable Linking from DOORS Databases to Simulink Objects” on page 7-4

“Insert Navigation Objects into DOORS Requirements” on page 7-6

“Customize DOORS Navigation Objects” on page 7-7

“Navigate Between DOORS Requirement and Model Object” on page 7-9

“Diagnose and Fix DXL Errors” on page 7-10

Why Add Navigation Objects to DOORS
Requirements?
IBM Rational DOORS software is a requirements management application
that you use to capture, track, and manage requirements. The Requirements
Management Interface (RMI) allows you to link Simulink objects to
requirements managed by external applications, including the DOORS
software.

When you create a link from a Simulink object to a DOORS requirement, the
RMI stores the link data in Simulink. Using this link, you can navigate from
the Simulink object to its associated requirement.

You can also configure the RMI to insert a navigation object in the
DOORS database. This navigation object serves as a link from the DOORS
requirement to its associated Simulink object.

To insert navigation objects into a DOORS database, you must have write
access to the DOORS database.

7-2

IBM® Rational® DOORS®

Configure Requirements Management Interface for
DOORS Software

• “Before You Begin” on page 7-3

• “Manually Install Additional Files for DOORS Software” on page 7-3

Before You Begin
If you plan to use DOORS software with the RMI, make sure to install
additional files to establish communication between the DOORS application
and the Simulink software. Follow the instructions in “Configure RMI for
IBM Rational DOORS or Microsoft ActiveX Navigation” on page 2-12.

Manually Install Additional Files for DOORS Software
The setup script automatically copies the required DOORS files to the
installation folders. However, the script might fail because of file permissions
in your DOORS installation. If the script fails, change the file permissions on
the DOORS installation folders and rerun the script.

You can also manually install the required files into the specified folders,
as described in the following steps:

1 If the DOORS software is running, close the application.

2 Copy the following files from matlabroot\toolbox\slvnv\reqmgt to the
<doors_install_dir>\lib\dxl\addins folder.

addins.idx
addins.hlp

If you have not modified the files, replace any existing versions of the files;
otherwise, merge the contents of both files into a single file.

3 Copy the following files from matlabroot\toolbox\slvnv\reqmgt to the
<doors_install_dir>\lib\dxl\addins\dmi folder.

dmi.hlp
dmi.idx
dmi.inc
runsim.dxl

7-3

7 Navigation from Requirements Documents

selblk.dxl

Replace any existing versions of these files.

4 Open the <doors_install_dir>\lib\dxl\startup.dxl file. In the
user-defined files section, add the following include statement:

#include <addins/dmi/dmi.inc>

If you upgrade from Version 7.1 to a later version of the DOORS software,
perform these additional steps:

a In your DOORS installation folder, navigate to the
...\lib\dxl\startupFiles subfolder.

b In a text editor, open the copiedFromDoors7.dxl file.

c Add // before this line to comment it out:

#include <addins/dmi/dmi.inc>

d Save and close the file.

5 Start the DOORS and MATLAB software.

6 Run the setup script using the following MATLAB command.

rmi setup

Enable Linking from DOORS Databases to Simulink
Objects
By default, the RMI does not insert navigation objects into requirements
documents. If you want to insert a navigation object into the requirements
document when you create a link from a Simulink object to a requirement,
you must change the RMI’s settings. The following tutorial uses the
sldemo_fuelsys example model to illustrate how to do this.

To enable linking from the DOORS database to the example model:

1 Open the model:

sldemo_fuelsys

7-4

IBM® Rational® DOORS®

Note You can modify requirements settings in the Requirements Settings
dialog box. These settings are global and not specific to open models.
Changes you make apply not only to open models, but also persist for
models you subsequently open. For more information about these settings,
see “The Requirements Settings Dialog Box” on page 2-16.

2 Select Analysis > Requirements > Settings.

The Requirements Settings dialog box opens.

3 Click the Selection Linking tab.

4 Select Modify destination for bi-directional linking.

When you enable this option, every time you create a selection-based link
from a Simulink object to a requirement, the RMI inserts navigation objects
at the designated location. Using this option requires write access to the
requirements document.

5 Select Store absolute path to model file.

For this exercise, you save a copy of the example model on the MATLAB
path.

If you add requirements to a model that is not on the MATLAB path, you
must select this option to enable linking from your requirements document
to your model.

6 In the Apply this user tag to new links field, enter one or more user tags
to apply to the links that you create.

For more information about user tags, see “User Tags and Requirements
Filtering” on page 4-25.

7 Click Close to close the Requirements Settings dialog box. Keep the
sldemo_fuelsys model open.

7-5

7 Navigation from Requirements Documents

Insert Navigation Objects into DOORS Requirements
When you enable Modify destination for bi-directional linking as
described in “Enable Linking from DOORS Databases to Simulink Objects”
on page 7-4, the RMI can insert a navigation object into both the Simulink
object and its associated DOORS requirement. This tutorial uses the
sldemo_fuelsys example model to illustrate how to do this. For this tutorial,
you also need a DOORS formal module that contains requirements.

1 Rename the sldemo_fuelsys model and save it in a writable folder on
the MATLAB path.

2 Start the DOORS software and open a formal module that contains
requirements.

3 Select the requirement that you want to link to by left-clicking that
requirement in the DOORS database.

4 In the sldemo_fuelsys model, select an object in the model.

This example creates a requirement from the fuel_rate_control
subsystem.

5 Right-click the Simulink object (in this case, the fuel_rate_control
subsystem) and select Requirements > Add link to current DOORS
object.

The RMI creates the link for the fuel_rate_control subsystem. It also
inserts a navigation object into the DOORS formal module—a Simulink
reference object () that enables you to navigate from the requirement
to the model.

7-6

IBM® Rational® DOORS®

6 Close the model.

Note When you navigate to a DOORS requirement from outside the
software, the DOORS module opens in read-only mode. If you want to modify
the DOORS module, open the module using DOORS software.

Insert Navigation Objects to Multiple Simulink Objects
If you have several Simulink objects that correspond to one requirement,
you can link them all to that requirement with a single navigation object.
This eliminates the need to insert multiple navigation objects for a single
requirement. The Simulink objects must be available in the same model
diagram or Stateflow chart.

The workflow for linking multiple Simulink objects to one DOORS
requirement is as follows:

1 Make sure that you have enabledModify destination for bi-directional
linking.

2 Select the DOORS requirement to link to.

3 Select the Simulink objects that need to link to that requirement.

4 Right-click one of the objects and select Requirements > Add link to
current DOORS object.

A single navigation object is inserted at the selected requirement.

5 Double-click the navigation object in DOORS to highlight the Simulink
objects that are linked to that requirement.

Customize DOORS Navigation Objects
If the RMI is configured to modify destination for bi-directional linking as
described in “Enable Linking from DOORS Databases to Simulink Objects”
on page 7-4, the RMI can insert a navigation object into your requirements

document. This object looks like the icon for the Simulink software:

7-7

7 Navigation from Requirements Documents

Note In IBM Rational DOORS requirements documents, clicking a
navigation object does not navigate back to your Simulink object. Select
MATLAB > Select object to find the Simulink object that contains the
requirements link.

To use an icon of your choosing for the navigation object:

1 Select Analysis > Requirements > Settings.

2 Select the Selection Linking tab.

3 Select Modify destination for bi-directional linking.

Selecting this option enables the Use custom bitmap for navigation
controls in documents option.

4 Select Use custom bitmap for navigation controls in documents.

5 Click Browse to locate the file you want to use for the navigation objects.

For best results, use an icon file (.ico) or a small (16×16 or 32×32) bitmap
image (.bmp) file for the navigation object. Other types of image files might
give unpredictable results.

6 Select the desired file to use for navigation objects and click Open.

7 Close the Requirements Settings dialog box.

The next time you insert a navigation object into a requirements document,
the RMI uses the file you selected.

Tip You can specify a custom template for labels of requirements links to
DOORS objects. For more information, see the rmi command.

7-8

IBM® Rational® DOORS®

Navigate Between DOORS Requirement and Model
Object
In “Insert Navigation Objects into DOORS Requirements” on page 7-6, you
created a link between a DOORS requirement and the fuel_rate_control
subsystem in the sldemo_fuelsys model. Navigate the links in both
directions:

1 With the sldemo_fuelsys model closed, go to the DOORS requirement
in the formal module.

2 Left-click the Simulink reference object that you inserted to select it.

3 Select MATLAB > Select item.

Your version of the sldemo_fuelsysmodel opens, with the fuel_rate_control
subsystem highlighted.

4 Log in to the DOORS software.

5 Navigate from the model to the DOORS requirement. In the Model Editor,
right-click the fuel_rate_control subsystem and select Requirements > 1.

7-9

7 Navigation from Requirements Documents

“<requirement name>” where <requirement name> is the name of the
DOORS requirement that you created.

The DOORS formal module opens with the requirement object and its child
objects highlighted in red.

Diagnose and Fix DXL Errors
If you try to synchronize your Simulink model to a DOORS project, you might
see the following errors:

-E- DXL: <Line:2> incorrectly concatenated tokens
-E- DXL: <Line:2> undeclared variable (dmiRefreshModule)
-I- DXL: all done with 2 errors and 0 warnings

If you see these errors, exit the DOORS software, rerun the rmi setup
command at the MATLAB command prompt, and restart the DOORS
software.

7-10

Microsoft® Office

Microsoft Office

In this section...

“Why Add Navigation Objects to Microsoft Office Requirements?” on page
7-11

“Enable Linking from Microsoft Office Documents to Simulink Objects”
on page 7-11

“Insert Navigation Objects in Microsoft Office Requirements Documents”
on page 7-13

“Customize Microsoft Office Navigation Objects” on page 7-14

“Navigate Between Microsoft Word Requirement and Model” on page 7-15

“Navigate with Objects Created Using ActiveX in Microsoft Office 2007
and 2010” on page 7-16

Why Add Navigation Objects to Microsoft Office
Requirements?
You can use the Microsoft Word and Microsoft Excel applications to capture,
track, and manage requirements. The Requirements Management Interface
(RMI) allows you to link Simulink objects to requirements managed by
external applications.

When you create a link from a Simulink object to a requirement in a Microsoft
Office document, the RMI stores the link data in Simulink. Using this link,
you can navigate from the Simulink object to its associated requirement.

You can also configure the RMI to insert a navigation object in a Microsoft
Office requirements document. This navigation object serves as a link from
the requirement to its associated Simulink object.

Enable Linking from Microsoft Office Documents to
Simulink Objects
By default, the RMI does not insert navigation objects into requirements
documents. If you want to insert a navigation object into the requirements
document when you create a link from a Simulink object to a requirement,

7-11

7 Navigation from Requirements Documents

you must change the RMI’s settings. The following tutorial uses the
slvnvdemo_fuelsys_officereq example model to illustrate how to do this.

The RMI can insert navigation objects into the following Microsoft Office
applications:

• Microsoft Excel

• Microsoft Word

To enable linking from a Microsoft Office document to the example model:

1 Open the model:

slvnvdemo_fuelsys_officereq

Note You can modify requirements settings in the Requirements Settings
dialog box. These settings are global and not specific to open models.
Changes you make apply not only to open models, but also persist for
models you subsequently open. For more information about these settings,
see “The Requirements Settings Dialog Box” on page 2-16.

2 Select Analysis > Requirements > Settings.

The Requirements Settings dialog box opens.

3 On the Selection Linking tab of the Requirements Settings dialog box:

• Enable Modify destination for bi-directional linking.

When you select this option, every time you create a selection-based link
from a Simulink object to a requirement, the RMI inserts a navigation
object at the designated location in the requirements document.

• To specify one or more user tags to apply to the links that you create, in
the Apply this user tag to new links field, enter the tag names.

For more information about user tags, see “User Tags and Requirements
Filtering” on page 4-25.

7-12

Microsoft® Office

4 Click Close to close the Requirements Settings dialog box. Keep the
slvnvdemo_fuelsys_officereq model open.

Insert Navigation Objects in Microsoft Office
Requirements Documents
Use selection-based linking to create a link from the
slvnvdemo_fuelsys_officereq model to a requirements document. If you
have configured the RMI as described in “Enable Linking from Microsoft
Office Documents to Simulink Objects” on page 7-11, the RMI can insert a
navigation object into the requirements document.

1 Open the Microsoft Word requirements document:

matlabroot/toolbox/slvnv/rmidemos/fuelsys_req_docs/
slvnvdemo_FuelSys_RequirementsSpecification.docx

2 Select the Throttle Sensor header.

3 In the slvnvdemo_fuelsys_officereq model, open the engine gas
dynamics subsystem.

4 Right-click the Throttle & Manifold subsystem and select
Requirements > Add link to Word selection.

5 The RMI inserts an URL-based link into the requirements document.

Insert Navigation Object That Links to Multiple Simulink
Objects
If you have several Simulink objects that correspond to one requirement,
you can link them all to that requirement with a single navigation object.
This eliminates the need to insert multiple navigation objects for a single
requirement. The Simulink objects must be available in the same model
diagram or Stateflow chart.

7-13

7 Navigation from Requirements Documents

The workflow for linking multiple Simulink objects to one Microsoft Word
requirement is as follows:

1 Make sure that the RMI is configured to insert navigation objects into
requirements documents, as described in “Enable Linking from Microsoft
Office Documents to Simulink Objects” on page 7-11.

2 Select the Microsoft Word requirement to link to.

3 Select the Simulink objects that need to link to that requirement.

4 Right-click one of the Simulink objects and select Requirements > Add
link to Word selection.

A single navigation object is inserted at the selected requirement.

5 Follow the navigation object link in Microsoft Word to highlight the
Simulink objects that are linked to that requirement.

Customize Microsoft Office Navigation Objects
If the RMI is configured to modify destination for bi-directional linking, the
RMI inserts a navigation object into your requirements document. This object

looks like the icon for the Simulink software:

Note In Microsoft Office requirements documents, following a navigation
object link highlights the Simulink object that contains a bi-directional link to
the associated requirement.

To use an icon of your own choosing for the navigation object:

1 Select Analysis > Requirements > Settings.

2 Select the Selection Linking tab.

3 Select Modify destination for bi-directional linking.

Selecting this option enables the Use custom bitmap for navigation
controls in documents option.

7-14

Microsoft® Office

4 Select Use custom bitmap for navigation controls in documents.

5 Click Browse to locate the file you want to use for the navigation objects.

For best results, use an icon file (.ico) or a small (16×16 or 32×32) bitmap
image (.bmp) file for the navigation object. Other types of image files might
give unpredictable results.

6 Select the desired file to use for navigation objects and click Open.

7 Close the Requirements Settings dialog box.

The next time you insert a navigation object into a requirements document,
the RMI uses the file you selected.

Navigate Between Microsoft Word Requirement and
Model
In “Insert Navigation Objects in Microsoft Office Requirements Documents”
on page 7-13, you created a link between a Microsoft Word requirement and
the Throttle & Manifold subsystem in the slvnvdemo_fuelsys_officereq
example model. Navigate these links in both directions:

1 In the slvnvdemo_fuelsys_officereq model, right-click the Throttle &
Manifold subsystem and select Requirements > 1. “Throttle Sensor”.

The requirements document opens, and the header in the requirements
document is highlighted.

2 In the requirements document, next to Throttle Sensor, follow the
navigation object link.

The engine gas dynamics subsystem opens, with the Throttle & Manifold
subsystem highlighted.

7-15

7 Navigation from Requirements Documents

Navigation fromMicrosoft Office requirements documents is not automatically
enabled upon MATLAB startup. Navigation is enabled when you create a
new requirements link or when you have enabled bi-directional linking as
described in “Enable Linking from Microsoft Office Documents to Simulink
Objects” on page 7-11. When attempting navigation from requirements links

with the icon, if you get a “Server Not Found” or similar message, enter the
command rmi('httpLink') to activate the internal MATLAB HTTP server.

Navigate with Objects Created Using ActiveX in
Microsoft Office 2007 and 2010

• “Save Requirements Documents to Microsoft Word 2007 or 2010 Format”
on page 7-16

• “Field Codes in Requirements Documents” on page 7-18

• “ActiveX Control Does Not Link to Model Object” on page 7-20

• “Delete an ActiveX Control from Microsoft® Excel® 2007” on page 7-22

• “Delete an ActiveX Control from Microsoft® Excel® 2010” on page 7-23

Save Requirements Documents to Microsoft Word 2007 or
2010 Format
If you create a requirements document with an earlier version of Microsoft
Word than Word 2007, links to the corresponding Simulink objects
automatically work. If you open a document created in an earlier version
and then save it in Microsoft Word 2007 format, make sure that the links to
the models continue to work:

1 Open a requirements document saved in a release of Microsoft Word earlier
than Microsoft Word 2007.

7-16

Microsoft® Office

2 Depending on which version of Microsoft Word you are running, do one
of the following:

• In Microsoft Word 2007, in the upper-left corner, click the Microsoft
Office Button.

• In Microsoft Word 2010, select the File tab.

3 Select Save As > Word Document.

You see the following dialog box.

4 Click OK.

If you are running Microsoft Word 2007, you see the following dialog box.

5 Click Yes to save the current document in the current Microsoft Word
format, with a .docx extension.

7-17

7 Navigation from Requirements Documents

Note You might need to enable ActiveX controls in the Microsoft Office Trust
Center.

Field Codes in Requirements Documents
If your Microsoft Word requirements document displays the field codes in
addition to, or instead of, the ActiveX icon, clear the Show field codes
instead of their values option.

The following graphic shows a requirements document created in Microsoft
Word 2003, with the field codes (CONTROL mwSimulink1.SLRefButton \s)
displayed.

The following graphic shows a requirements document created in Microsoft
Word 2007, with the field codes (CONTROL mwSimulink1.SLRefButton)
displayed.

To hide the field codes and display the ActiveX icon:

1 Depending on which version of Microsoft Word you are running, do one
of the following:

7-18

Microsoft® Office

• In Microsoft Word 2007, in the upper-left corner, click the Microsoft
Office Button and at the bottom of the window, clickWord Options.

• In Microsoft Word 2010, select File > Options.

2 In the left-hand portion of the pane, click Advanced.

3 In the Advanced pane, scroll to the Show document content section
and clear the Show field codes instead of their values option.

7-19

7 Navigation from Requirements Documents

ActiveX Control Does Not Link to Model Object
If you click an ActiveX control that links to a Simulink or Stateflow object,
and the object does not open, do one of the following:

• Store your requirements documents in trusted locations, as described in
the Microsoft Office 2007 documentation. The Trust Center does not check
files for ActiveX controls stored in trusted locations, so you can maintain
your Trust Center restrictions.

• Enable ActiveX controls:

1 Depending on which version of Microsoft Office you are using, do one
of the following:

7-20

Microsoft® Office

• In Microsoft Word 2007 or Microsoft Excel 2007, in the upper-left
corner, click the Microsoft Office Button.

In the pane that opens, at the bottom, click Word Options or Excel
Options, depending on which program you are running.

• In Microsoft Word 2010 or Microsoft Excel 2010, select
File > Options.

2 In the left-hand portion of the pane, click Trust Center.

3 In the Trust Center pane, click Trust Center Settings.

4 In the Trust Center pane, on the right, select ActiveX Settings.

5 Select the setting that you want for ActiveX controls:

• Prompt me for enabling all controls with minimal restrictions
to decide each time you click an ActiveX control if you want to enable
all controls.

7-21

7 Navigation from Requirements Documents

• Enable all controls without restrictions and without
prompting to enable all ActiveX controls whenever you open the
document.

6 Close the open dialog boxes.

7 Restart the application for the settings to take effect.

Delete an ActiveX Control from Microsoft Excel 2007
Your document may have an ActiveX control in a worksheet cell:

To remove an ActiveX control from your Microsoft Excel 2007 spreadsheet:

1 In Microsoft Excel 2007, in the upper-left corner, click the Microsoft
Office Button.

2 In the pane that opens, at the bottom, click Excel Options.

3 In the Microsoft Excel Options dialog box, in the left-hand pane, click
Popular.

4 On the Popular pane, in the Top options for working with Excel
section, select Show Developer tab in the Ribbon.

5 Click OK.

6 In the Ribbon, on the Developer tab, select Design Mode.

When you select Design Mode, the ActiveX control is no longer visible in
the cell.

7 Click where the ActiveX control was, and you see four handles showing
the location of the control.

7-22

Microsoft® Office

8 Select Home > Cut to delete the control.

Delete an ActiveX Control from Microsoft Excel 2010
Your document may have an ActiveX control in a worksheet cell:

To remove an ActiveX control from your Microsoft Excel 2010 spreadsheet:

1 Select the control by clicking it.

2 Select Home > Cut to delete the control.

7-23

7 Navigation from Requirements Documents

7-24

8

Custom Types of
Requirements Documents

• “Why Create a Custom Link Type?” on page 8-2

• “Implement Custom Link Types” on page 8-3

• “Custom Link Type Functions” on page 8-4

• “Links and Link Types” on page 8-5

• “Link Type Properties” on page 8-6

• “Custom Link Type Registration” on page 8-10

• “Create a Custom Requirements Link Type” on page 8-11

• “Custom Link Type Synchronization” on page 8-21

• “Navigate to Simulink Objects from External Documents” on page 8-22

8 Custom Types of Requirements Documents

Why Create a Custom Link Type?
In addition to linking to built-in types of requirements documents, you
can register custom requirements document types with the Requirements
Management Interface (RMI). Then you can create requirement links from
your model to these types of documents.

With custom link types, you can:

• Link to requirement items in commercial requirement tracking software

• Link to in-house database systems

• Link to document types that the RMI does not support

The custom link type API allows you to define MATLAB functions that
enable linking between your Simulink model and your custom requirements
document type. These functions also enable new link creation and navigation
between the model and documents.

For example, navigation involves opening a requirements document and
finding the specific requirement record. When you click your custom link
in the content menu of a linked object in the model, Simulink uses your
custom link type navigation function to open the document and highlight the
target requirement based on the implementation provided. The navigation
function you implement uses the available API to communicate with your
requirements storage application.

Typically, MATLAB runs an operating system shell command or uses ActiveX
communication for sending navigation requests to external applications.

Alternatively, if your requirements are stored as custom variants of text
or HTML files, you can use the built-in editor or Web browser to open the
requirements document.

8-2

Implement Custom Link Types

Implement Custom Link Types
To implement a custom link type:

1 Create a MATLAB function file based on the custom link type template, as
described in “Custom Link Type Functions” on page 8-4.

2 Customize the custom link type file to specify the link type properties and
custom callback functions required for the custom link type, as described in
“Link Type Properties” on page 8-6.

3 Register the custom link type using the rmi command 'register' option,
as described in “Custom Link Type Registration” on page 8-10.

8-3

8 Custom Types of Requirements Documents

Custom Link Type Functions
To create a MATLAB function file, start with the custom link type template,
located in:

matlabroot/toolbox/slvnv/reqmgt/linktypes/linktype_TEMPLATE.m

Your custom link type function:

• Must exist on the MATLAB path with a unique function and file name.

• Cannot require input arguments.

• Must return a single output argument that is an instance of the
requirements link type class.

To view similar files for the built-in link types, see the following files in
matlabroot\toolbox\slvnv\reqmgt\linktypes:

linktype_rmi_doors.m
linktype_rmi_excel.m
linktype_rmi_html.m
linktype_rmi_pdf.m
linktype_rmi_text.m
linktype_rmi_url.m
linktype_rmi_word.m

8-4

Links and Link Types

Links and Link Types
Requirements links are the data structures, managed by Simulink, that
identify a specific location within a document. You get and set the links on a
block using the rmi command.

Links and link types work together to perform navigation and manage
requirements. The doc and id fields of a link uniquely identify the linked
item in the external document. The RMI passes both of these strings to the
navigation command when you navigate a link from the model.

8-5

8 Custom Types of Requirements Documents

Link Type Properties
Link type properties define how links are created, identified, navigated to,
and stored within the requirement management tool. The following table
describes each of these properties.

Property Description

Registration The name of the function that creates the link type.
The RMI stores this name in the Simulink model.

Label A string to identify this link type. In the
Requirements dialog box, this string appears on the
Document type drop-down list for a Simulink or
Stateflow object.

IsFile A Boolean property that indicates if the linked
documents are files within the computer file system.
If a document is a file:

• The software uses the standard method for
resolving the path.

• In the Requirements dialog box, when you click
Browse, the file selection dialog box opens.

Extensions An array of file extensions. Use these file extensions
as filter options in the Requirements dialog box when
you click Browse. The file extensions infer the link
type based on the document name. If you registered
more than one link type for the same file extension,
the link type that you registered takes first priority.

LocDelimiters A string containing the list of supported navigation
delimiters. The first character in the ID of a
requirement specifies the type of identifier. For
example, an identifier can refer to a specific page
number (#4), a named bookmark (@my_tag), or some
searchable text (?search_text). The valid location
delimiters determine the possible entries in the
Requirements dialog box Location drop-down list.

8-6

Link Type Properties

Property Description

NavigateFcn The MATLAB callback invoked when you click a link.
The function has two input arguments: the document
field and the ID field of the link:

feval(LinkType.NavigateFcn, Link.document, Link.id)

ContentsFcn The MATLAB callback invoked when you click the
Document Index tab in the Requirements dialog
box. This function has a single input argument that
contains the full path of the resolved function or, if the
link type is not a file, the Document field contents.

The function returns three outputs:

• Labels

• Depths

• Locations

BrowseFcn The MATLAB callback invoked when you click
Browse in the Requirements dialog box. You do
not need this function when the link type is a file.
The function takes no input arguments and returns
a single output argument that identifies the selected
document.

CreateURLFcn The MATLAB callback that constructs a path name
to the requirement. This function uses the document
path or URL to create a specific requirement URL.
The requirement URL is based on a location identifier
specified in the third input argument. The input
arguments are:

• Full path name to the requirements document

• Info about creating a URL to the document (if
applicable)

• Location of the requirement in the document

8-7

8 Custom Types of Requirements Documents

Property Description

This function returns a single output argument, the
string to use when navigating to the requirement
from the generated report.

IsValidDocFcn The MATLAB callback invoked when you run a
requirements consistency check. The function takes
one input argument—the fully qualified name for
the requirements document. It returns true if the
document can be located; it returns false if the
document cannot be found or the document name is
invalid.

IsValidIdFcn The MATLAB callback invoked when you run a
requirements consistency check. This function takes
two input arguments:

• Fully qualified name for the requirements
document

• Location of the requirement in the document

IsValidIdFcn returns true if it finds the requirement
and false if it cannot find that requirement in the
specified document.

IsValidDescFcn The MATLAB callback invoked when you run a
requirements consistency check. This function has
three input arguments:

• Full path to the requirements document

• Location of the requirement in the document

• Requirement description label as stored in
Simulink

IsValidDescFcn returns two outputs:

• True if the description matches the requirement,
false otherwise.

8-8

Link Type Properties

Property Description

• The requirement label in the document, if not
matched in Simulink.

DetailsFcn The MATLAB callback invoked when you generate
the requirements report with the Include details
from linked documents option. This function
returns detailed content associated with the
requirement and has three input arguments:

• Full path to the requirements document

• Location of the requirement in the document

• Level of details to include in report (Unused)

The DetailsFcn returns two outputs:

• Numeric array that describes the hierarchical
relationship among the fragments in the cell array

• Cell array of formatted fragments (paragraphs,
tables, et al.) from the requirement

SelectionLinkFcn The MATLAB callback invoked when you use the
selection-based linking menu option for this document
type. This function has two input arguments:

• Handle to the model object that will have the
requirement link

• True if a navigation object is inserted into the
requirements document, or false if no navigation
object is inserted

SelectionLinkFcn returns the requirements link
structure for the selected requirement.

8-9

8 Custom Types of Requirements Documents

Custom Link Type Registration
Register your custom link type by passing the name of the MATLAB function
file to the rmi command as follows:

rmi register mytargetfilename

Once you register a link type, it appears in the Requirements dialog box as
an entry in the Document type drop-down list. A file in your preference
folder contains the list of registered link types, so the custom link type is
loaded each time you run MATLAB.

When you create links using custom link types, the software saves the
registration name and the other link properties specified in the function file.
When you attempt to navigate to such a link, the RMI resolves the link type
against the registered list. If the software cannot find the link type, you see
an error message.

You can remove a link type with the following MATLAB command:

rmi unregister mytargetfilename

8-10

Create a Custom Requirements Link Type

Create a Custom Requirements Link Type
In this example, you implement a custom link type to a hypothetical
document type, a text file with the extension .abc. Within this document, the
requirement items are identified with a special text string, Requirement::,
followed by a single space and then the requirement item inside quotation
marks (").

You will create a document index listing all the requirement items. When
navigating from the Simulink model to the requirements document, the
document opens in the MATLAB Editor at the line of the requirement that
you want.

To create a custom link requirement type:

1 Write a function that implements the custom link type and save it on the
MATLAB path.

For this example, the file is rmicustabcinterface.m, containing the
function, rmicustabcinterface, that implements the ABC files shipping
with your installation.

2 To view this function, at the MATLAB prompt, type:

edit rmicustabcinterface

The file rmicustabcinterface.m opens in the MATLAB Editor. The
content of the file is:

function linkType = rmicustabcinterface

%RMICUSTABCINTERFACE - Example custom requirement link type

%

% This file implements a requirements link type that maps

% to "ABC" files.

% You can use this link type to map a line or item within an ABC

% file to a Simulink or Stateflow object.

%

% You must register a custom requirement link type before using it.

% Once registered, the link type will be reloaded in subsequent

% sessions until you unregister it. The following commands

% perform registration and registration removal.

8-11

8 Custom Types of Requirements Documents

%

% Register command: >> rmi register rmicustabcinterface

% Unregister command: >> rmi unregister rmicustabcinterface

%

% There is an example document of this link type contained in the

% requirement demo directory to determine the path to the document

% invoke:

%

% >> which demo_req_1.abc

% Copyright 1984-2010 The MathWorks, Inc.

% $Revision: 1.1.6.20.2.3 $ $Date: 2013/01/16 07:28:39 $

% Create a default (blank) requirement link type

linkType = ReqMgr.LinkType;

linkType.Registration = mfilename;

% Label describing this link type

linkType.Label = 'ABC file (for demonstration)';

% File information

linkType.IsFile = 1;

linkType.Extensions = {'.abc'};

% Location delimiters

linkType.LocDelimiters = '>@';

linkType.Version = ''; % not required

% Uncomment the functions that are implemented below

linkType.NavigateFcn = @NavigateFcn;

linkType.ContentsFcn = @ContentsFcn;

function NavigateFcn(filename,locationStr)

if ~isempty(locationStr)

findId=0;

switch(locationStr(1))

case '>'

lineNum = str2num(locationStr(2:end));

openFileToLine(filename, lineNum);

8-12

Create a Custom Requirements Link Type

case '@'

openFileToItem(filename,locationStr(2:end));

otherwise

openFileToLine(filename, 1);

end

end

function openFileToLine(fileName, lineNum)

if lineNum > 0

if matlab.desktop.editor.isEditorAvailable

matlab.desktop.editor.openAndGoToLine(fileName, lineNum);

end

else

edit(fileName);

end

function openFileToItem(fileName, itemName)

reqStr = ['Requirement:: "' itemName '"'];

lineNum = 0;

fid = fopen(fileName);

i = 1;

while lineNum == 0

lineStr = fgetl(fid);

if ~isempty(strfind(lineStr, reqStr))

lineNum = i;

end;

if ~ischar(lineStr), break, end;

i = i + 1;

end;

fclose(fid);

openFileToLine(fileName, lineNum);

function [labels, depths, locations] = ContentsFcn(filePath)

% Read the entire file into a variable

fid = fopen(filePath,'r');

contents = char(fread(fid)');

fclose(fid);

8-13

8 Custom Types of Requirements Documents

% Find all the requirement items

fList1 = regexpi(contents,'\nRequirement:: "(.*?)"','tokens');

% Combine and sort the list

items = [fList1{:}]';

items = sort(items);

items = strcat('@',items);

if (~iscell(items) && length(items)>0)

locations = {items};

labels = {items};

else

locations = [items];

labels = [items];

end

depths = [];

3 To register the custom link type ABC, type the following MATLAB
command:

rmi register rmicustabcinterface

The ABC file type appears on the Requirements dialog box drop-down list
of document types.

4 Create a text file with the .abc extension containing several requirement
items marked by the Requirement:: string.

For your convenience, an example file ships with your installation. The
example file is matlabroot\toolbox\slvnv\rmidemos\demo_req_1.abc.
demo_req_1.abc contains the following content:

Requirement:: "Altitude Climb Control"

Altitude climb control is entered whenever:
|Actual Altitude- Desired Altitude | > 1500

Units:
Actual Altitude - feet

8-14

Create a Custom Requirements Link Type

Desired Altitude - feet

Description:

When the autopilot is in altitude climb
control mode, the controller maintains a
constant user-selectable target climb rate.

The user-selectable climb rate is always a
positive number if the current altitude is
above the target altitude. The actual target
climb rate is the negative of the user
setting.

End of "Altitude Climb Control">

Requirement:: "Altitude Hold"

Altitude hold mode is entered whenever:
|Actual Altitude- Desired Altitude | <

30*Sample Period*(Pilot Climb Rate / 60)

Units:
Actual Altitude - feet
Desired Altitude - feet
Sample Period - seconds
Pilot Climb Rate - feet/minute

Description:

The transition from climb mode to altitude
hold is based on a threshold that is
proportional to the Pilot Climb Rate.

At higher climb rates the transition occurs
sooner to prevent excessive overshoot.

End of "Altitude Hold"

8-15

8 Custom Types of Requirements Documents

Requirement:: "Autopilot Disable"

Altitude hold control and altitude climb
control are disabled when autopilot enable
is false.

Description:

Both control modes of the autopilot
can be disabled with a pilot setting.

ENd of "Autopilot Disable"

Requirement:: "Glide Slope Armed"

Glide Slope Control is armed when Glide
Slope Enable and Glide Slope Signal
are both true.

Units:
Glide Slope Enable - Logical
Glide Slope Signal - Logical

Description:

ILS Glide Slope Control of altitude is only
enabled when the pilot has enabled this mode
and the Glide Slope Signal is true. This indicates
the Glide Slope broadcast signal has been
validated by the on board receiver.

End of "Glide Slope Armed"

Requirement:: "Glide Slope Coupled"

Glide Slope control becomes coupled when the control
is armed and (Glide Slope Angle Error > 0) and

8-16

Create a Custom Requirements Link Type

Distance < 10000

Units:
Glide Slope Angle Error - Logical
Distance - feet

Description:

When the autopilot is in altitude climb control
mode the controller maintains a constant user
selectable target climb rate.

The user-selectable climb rate is always a positive
number if the current altitude is above the target
altitude the actual target climb rate is the
negative of the user setting.

End of "Glide Slope Coupled"

5 Open the following example model:

aero_dap3dof

6 Right-click the Reaction Jet Control subsystem and select
Requirements > Edit/Add Links.

The Requirements dialog box opens.

7 Click New to add a new requirement link. The Document type drop-down
list now contains the ABC file (for demonstration) option.

8-17

8 Custom Types of Requirements Documents

8 Set Document type to ABC file (for demonstration) and browse to
the matlabroot\toolbox\slvnv\rmidemos\demo_req_1.abc file. The
browser shows only the files with the .abc extension.

9 To define a particular location in the requirements document, use the
Location field.

In this example, the rmicustabcinterface function specifies two types of
location delimiters for your requirements:

• > — Line number in a file

• @— Named item, such as a bookmark, function, or HTML anchor

Note The rmi reference page describes other types of requirements
location delimiters.

The Location drop-down list contains these two types of location delimiters
whenever you set Document type to ABC file (for demonstration).

8-18

Create a Custom Requirements Link Type

10 Select Line number. Enter the number 26, which corresponds with the
line number for the Altitude Hold requirement in demo_req_1.abc.

11 In the Description field, enter Altitude Hold, to identify the requirement
by name.

12 Click Apply.

13 Verify that the Altitude Hold requirement links to the Reaction
Jet Control subsystem. Right-click the subsystem and select
Requirements > 1. “Altitude Hold”.

Create a Document Index
A document index is a list of all the requirements in a given document. To
create a document index, MATLAB uses file I/O functions to read the contents
of a requirements document into a MATLAB variable. The RMI extracts
the list of requirement items.

The example requirements document, demo_req_1.abc, defines four
requirements using the string Requirement::. To generate the document
index for this ABC file, the ContentsFcn function in rmicustabcinterface.m
extracts the requirements names and inserts @ before each name.

For the demo_req_1.abc file, in the Requirements: Reaction Jet Control
dialog box, click the Document Index tab. The ContentsFcn function
generates the document index automatically.

8-19

8 Custom Types of Requirements Documents

8-20

Custom Link Type Synchronization

Custom Link Type Synchronization
Simulink Verification and Validation provides an API for synchronization of
links for custom requirements documents. To implement synchronization for
your custom requirements link type, inherit from this MATLAB class:

matlabroot/toolbox/slvnv/reqmgt/+rmisync/@SyncApi/SyncApi.m

The following package shows the use of this API for IBM Rational DOORS
synchronization:

matlabroot/toolbox/slvnv/reqmgt/+rmidoors/

To support synchronization for your custom requirements link type, create a
custom type implementation in a new subclass. For example, to implement
synchronization for links to requirements documents in Requirements
Interchange Format (RIF/ReqIF), create the new package +rmireqif with the
new subclass @SyncApiReqif:

matlabroot/toolbox/slvnv/reqmgt/+rmireqif/@SyncApiReqif/SyncApiReqif.m

8-21

8 Custom Types of Requirements Documents

Navigate to Simulink Objects from External Documents
The RMI includes several functions that simplify creating navigation
interfaces in external documents. The external application that displays
your document must support an application programming interface (API) for
communicating with the MATLAB software.

Provide Unique Object Identifiers
Whenever you create a requirement link for a Simulink or Stateflow object,
the RMI uses a globally unique identifier for that object. This identifier
identified the object. The identifier does not change if you rename or move the
object, or add or delete requirement links. The RMI uses the unique identifier
only to resolve an object within a model.

Use the rmiobjnavigate Function
The rmiobjnavigate function identifies the Simulink or Stateflow object,
highlights that object, and brings the editor window to the front of the screen.
When you navigate to a Simulink model from an external application, invoke
this function.

The first time you navigate to an item in a particular model, you might
experience a slight delay while the software initializes the communication
API and the internal data structures. You do not experience a long delay on
subsequent navigation.

Determine the Navigation Command
To create a requirement link for a Simulink or Stateflow object, at the
MATLAB prompt, use the following command to find the navigation command
string, where obj is a handle or a uniquely resolved name for the object:

[navCmd, objPath] = rmi('navCmd', obj);

The return values of the navCmd method are:

• navCmd — A string that navigates to the object when evaluated by the
MATLAB software.

• objPath — A string that identifies the model object

8-22

Navigate to Simulink® Objects from External Documents

Send the navCmd strings to the MATLAB software for evaluation when
navigating from the external application to the object obj in the Simulink
model. Use and objPath string to visually identify the target object in the
requirements document.

Use the ActiveX Navigation Control
The RMI uses software that includes a special Microsoft ActiveX control
to enable navigation to Simulink objects from Microsoft Word and Excel
documents. You can use this same control in any other application that
supports ActiveX within its documents.

The control is derived from a push button and has the Simulink icon.
There are two instance properties that define how the control works. The
tooltipstring property is the string that is displayed in the control tooltip.
The MLEvalCmd property is the string that you pass to the MATLAB software
for evaluation when you click the control.

Typical Code Sequence for Establishing Navigation
Controls
When you create an interface to an external tool, you can automate the
procedure for establishing links. This way, you do not need to manually
update the dialog box fields. This type of automation occurs as part of the
selection-based linking for certain built-in types, such as Microsoft Word
and Excel documents.

To automate the procedure for establishing links:

1 Select a Simulink or Stateflow object and an item in the external document.

2 Invoke the link creation action either from a Simulink menu or command,
or a similar mechanism in the external application.

3 Identify the document and current item using the scripting capability of
the external tool. Pass this information to the MATLAB software. Create a
requirement link on the selected object using the RMI API as follows:

a Create an empty link structure using the following command:

rmi('createempty')

8-23

8 Custom Types of Requirements Documents

b Fill in the link structure fields based on the target location in the
requirements document.

c Attach the link to the object using the following command:

rmi('cat')

4 Determine the MATLAB navigation command string that you must embed
in the external tool, using the navCmd method:

[navCmd, objPath] = rmi('navCmd',obj)

5 Create a navigation item in the external document using the scripting
capability of the external tool. Set the MATLAB navigation command
string in the property.

When using ActiveX navigation objects provided by the external tool, set
the MLEvalCmd property to the navCmd and set the tooltipstring property
to objPath.

You define the MATLAB code implementation of this procedure as the
SelectionLinkFcn function in the link type definition file. The following
files in matlabroot\toolbox\slvnv\reqmgt\linktypes contain examples of
how to implement this functionality:

linktype_rmi_doors.m
linktype_rmi_excel.m
linktype_rmi_word.m

8-24

9

Requirements Information
in Generated Code

• “How Requirements Information Is Included in Generated Code” on page
9-2

• “Generate Code for Models with Requirements Links” on page 9-3

9 Requirements Information in Generated Code

How Requirements Information Is Included in Generated
Code

After you simulate your model and verify its performance against the
requirements, you can generate code from the model for an embedded
real-time application. The Embedded Coder® software generates code for
Embedded Real-Time (ERT) targets.

If the model has any links to requirements, the Embedded Coder software
inserts information about the requirements links into the code comments.

For example, if a block has a requirement link, the software generates code
for that block. In the code comments for that block, the software inserts:

• Requirement description

• Hyperlink to the requirements document that contains the linked
requirement associated with that block

Note You must have a license for Embedded Coder to generate code for an
embedded real-time application.

Comments for the generated code include requirements descriptions and
hyperlinks to the requirements documents in the following locations.

Model Object with Requirement Location of Code Comments with
Requirements Links

Model In the main header file, <model>.h

Nonvirtual subsystem At the call site for the subsystem

Virtual subsystem At the call site of the closest
nonvirtual parent subsystem. If a
virtual subsystem does not have
a nonvirtual parent, requirement
descriptions appear in the main
header file for the model, <model>.h.

Nonsubsystem block In the generated code for the block

9-2

Generate Code for Models with Requirements Links

Generate Code for Models with Requirements Links
To specify that generated code of an ERT target include requirements:

1 Open the rtwdemo_requirements example model.

2 Select Simulation > Model Configuration Parameters.

3 In the Select tree of the Configuration Parameters dialog box, select the
Code Generation node.

The currently configured system target must be an ERT target.

4 Under Code Generation, select Comments.

5 In the Custom comments section on the right, select the Requirements
in block comments check box.

6 Under Code Generation, select Report.

7 On the Report pane, select:

• Create code generation report

• Open report automatically

8 On the Code Generation main pane, click Build.

9-3

9 Requirements Information in Generated Code

9 In the code-generation report, open rtwdemo_requirements.c.

10 Scroll to the code for the Pulse Generator block, clock. The comments for
the code associated with that block include a hyperlink to the requirement
linked to that block.

11 Click the link Clock period shall be consistent with chirp
tolerance to open the HTML requirements document to the associated
requirement.

Note When you click a requirements link in the code comments, the
software opens the application for the requirements document, except
if the requirements document is a DOORS module. To view a DOORS
requirement, start the DOORS software and log in before clicking the
hyperlink in the code comments.

9-4

Model Component Testing

• Chapter 10, “Overview of Component Verification”

• Chapter 11, “Verifying Generated Code for a Component”

10

Overview of Component
Verification

• “Component Verification” on page 10-2

• “Basic Approach to Component Verification” on page 10-4

• “Functions for Component Verification” on page 10-9

10 Overview of Component Verification

Component Verification

In this section...

“Component Verification Approaches” on page 10-2

“Simulink® Verification and Validation™ Tools for Component Verification”
on page 10-2

Component Verification Approaches
Component verification allows you to test a design component in your model
using one of two approaches:

• Within the context of the model that contains the component —
Using systematic simulation of closed-loop controllers requires that you
verify components within a control system model. Doing so allows you
to test the control algorithms with your model. This approach is called
system analysis.

• As standalone components — For a high level of confidence in the
component algorithm, verify the component in isolation from the rest of the
system. This approach is called component analysis.

Verifying standalone components provides several advantages:

- You can use the analysis to focus on portions of the design that you
cannot test because of the physical limitations of the system being
controlled.

- You can use this approach for open-loop simulations to test the plant
model without feedback control.

- You can use this approach when the model is not yet available or when
you need to simulate a control system model in accelerated mode for
performance reasons.

Simulink Verification and Validation Tools for
Component Verification
By isolating the component to verify and using tools that the Simulink
Verification and Validation software provides, you create test cases that allow

10-2

Component Verification

you to expand the scope of the testing for large models. This expanded testing
helps you accomplish the following:

• Achieve 100% model coverage — If certain model components do not record
100% coverage, the top-level model cannot achieve 100% coverage. By
verifying these components individually, you can create test cases that
fully specify the component interface, allowing the component to record
100% coverage.

• Debug the component — To verify that each model component satisfies the
specified design requirements, you can create test cases that verify that
specific components perform as designed.

• Test the robustness of the component — To verify that a component handles
unexpected inputs and calculations properly, you can create test cases that
generate data. Then, test the error-handling capabilities in the component.

10-3

10 Overview of Component Verification

Basic Approach to Component Verification

In this section...

“Workflow for Component Verification” on page 10-4

“Verify a Component Independently of the Container Model” on page 10-6

“Verify a Model Block in the Context of the Container Model” on page 10-7

Workflow for Component Verification
The following graphic illustrates the common workflow for component
verification.

�������
�

�����	

 ���!
�
����
����

�"
��"��
�

#�������
$������

�
���!
�
����
����

�"
��"��
�

%����������"
�����

����
�����������&
�'��������

�(����)(�����

�������
�

�����	

*����������

��"��

���
���

�����
�����	
��

�
�

����
���
����"�
+�������
���
	���

����
��
�

���"��
���������
�������
�

����
��
�

����
��
�

This graphic illustrates the two approaches for component verification,
described in “Component Verification” on page 10-2:

1 Choose your approach for component verification:

10-4

Basic Approach to Component Verification

• For closed-loop simulations, verify a component within the context of its
container model by logging the signals to that component and storing
them in a data file. If those signals do not constitute a complete test
suite, generate a harness model and add or modify the test cases in the
Signal Builder.

• For open-loop simulations, verify a component independently of the
container model by extracting the component from its container model
and creating a harness model for the extracted component. Add or
modify test cases in the Signal Builder and log the signals to the
component in the harness model.

2 Prepare component for verification.

3 Create and log test cases. If desired, merge the test case data into a single
data file.

The data file contains the test case data for simulating the component. If
you cannot achieve the desired results with a certain set of test cases, add
new test cases or modify existing test cases in the data file, and merging
them into a single data file.

Continue adding or modifying test cases until you achieve a test suite that
satisfies the goals of your analysis.

4 Execute the test cases in Software-in-the-Loop or Processor-in-the-Loop
mode.

5 After you have a complete test suite, you can:

• Simulate the model and execute the test cases to:

– Record coverage.

– Record output values to make sure that you get the expected results.

• Invoke the Code Generation Verification (CGV) API to execute the
generated code for the model that contains the component in simulation,
Software-in-the-Loop (SIL), or Processor-in-the-Loop (PIL) mode.

10-5

10 Overview of Component Verification

Note To execute a model in different modes of execution, you use the
CGV API to verify the numerical equivalence of results. For more
information about the CGV API, see “Programmatic Code Generation
Verification”.

The next sections describe the steps for component verification in more detail:

• “Verify a Component Independently of the Container Model” on page 10-6

• “Verify a Model Block in the Context of the Container Model” on page 10-7

Verify a Component Independently of the Container
Model
Use component analysis to verify:

• Model blocks

• Atomic subsystems

• Stateflow atomic subcharts

The recommended steps for verifying a component independently of the
container model:

1 Depending on the type of component, take one of the following actions:

• Model blocks — Open the referenced model.

• Atomic subsystems — Extract the contents of the subsystem into its
own Simulink model.

• Atomic subcharts — Extract the contents of the Stateflow atomic
subchart into its own Simulink model.

2 Create a harness model for:

• The referenced model

• The extracted model that contains the contents of the atomic subsystem
or atomic subchart

10-6

Basic Approach to Component Verification

3 Add or modify test cases in the Signal Builder in the harness model.

4 Log the input signals from the Signal Builder to the test unit.

5 Repeat steps 3 and 4 until you are satisfied with the test suite.

6 Merge the test case data into a single file.

7 Depending on your goals, take one of the following actions:

• Execute the test cases to:

– Record coverage.

– Record output values and make sure that they equal the expected
values.

• Invoke the Code Generation Verification (CGV) API to execute the test
cases in Software-in-the-Loop (SIL) or Processor-in-the-Loop (PIL) mode
on the generated code for the model that contains the component.

If the test cases do not achieve the desired results, repeat steps 3 through 5.

Verify a Model Block in the Context of the Container
Model
Use system analysis to verify a Model block in the context of the block’s
container model. Use this technique when you analyze a closed-loop controller.

The recommended steps for system analysis:

1 Log the input signals to the component by simulating the container model.

or

Analyze the model using the Simulink Design Verifier™ software.

2 If you want to add test cases to your test suite or modify existing test cases,
create a harness model using the logged signals.

3 Add or modify test cases in the Signal Builder in the harness model.

4 Log the input signals from the Signal Builder to the test unit.

10-7

10 Overview of Component Verification

5 Repeat steps 3 and 4 until you are satisfied with the test suite.

6 Merge the test case data into a single file.

7 Depending on your goals, do one of the following:

• Execute the test cases to:

– Record coverage.

– Record output values and make sure that they equal the expected
values.

• Invoke the Code Generation Verification (CGV) API to execute the test
cases in Software-in-the-Loop (SIL) or Processor-in-the-Loop (PIL) mode
on the generated code for the model.

If the test cases do not achieve the desired results, repeat steps 3 through 5.

10-8

Functions for Component Verification

Functions for Component Verification
The Simulink Verification and Validation software provides several functions
that facilitate the tasks associated with component verification.

Task Function

Simulate a Simulink model and log input signals to
a Model block in the model. If you modify the test
cases in the Signal Builder harness model, use this
approach for logging input signals to the harness
model itself.

slvnvlogsignals

Create a harness model for a component, using
logged input signals if specified, or using the
default signals.

A harness model contains four Simulink blocks
as described in “Prepare the Component for
Verification” on page 11-4 in “Verify Generated
Code for a Component” on page 11-2.

slvnvmakeharness

Merge test case data into a single data structure
for batch execution or harness generation.

slvnvmergedata

Merge test cases from several harness models into
a single harness model.

slvnvmergeharness

Extract an atomic subsystem or atomic subchart
into a new model.

slvnvextract

Simulate a model, executing the specified test cases
to record model coverage and outport values.

slvnvruntest

Invoke the Code Generation Verification (CGV)
API, and execute the specified test cases on the
generated code for the model.

slvnvruncgvtest

Component verification functions do not support the following Simulink
software features:

• Variable-step solvers for slvnvruntest

• Component interfaces that contain:

10-9

10 Overview of Component Verification

- Complex signals

- Variable-size signals

- Array of buses

- Multiword fixed-point data types

10-10

11

Verifying Generated Code
for a Component

11 Verifying Generated Code for a Component

Verify Generated Code for a Component

In this section...

“About the Example Model” on page 11-2

“Prepare the Component for Verification” on page 11-4

“Create and Log Test Cases” on page 11-6

“Merge Test Case Data” on page 11-7

“Record Coverage for Component” on page 11-8

“Execute Component in Simulation Mode” on page 11-9

“Execute Component in Software-in-the-Loop (SIL) Mode” on page 11-9

About the Example Model
This example uses the slvnvdemo_powerwindow example model to show
how to verify a component in the context of the model that contains that
component. As you work through this example, you use the Simulink
Verification and Validation component verification functions to create test
cases and measure coverage for a referenced model. In addition, you execute
the referenced model in both simulation mode and Software-in-the-Loop (SIL)
mode using the Code Generation Verification (CGV) API and then compare
the results.

Note You must have the following product licenses to run this example:

• Stateflow

• Embedded Coder

• Simulink Coder™

The component you verify is a Model block named control. This component
resides inside the power_window_control_system subsystem in the top level
of the slvnvdemo_powerwindow model.

11-2

Verify Generated Code for a Component

The Model block references the slvnvdemo_powerwindow_controller model.

The referenced model contains a Stateflow chart control, which implements
the logic for the power window controller.

11-3

11 Verifying Generated Code for a Component

Prepare the Component for Verification
To verify the referenced model slvnvdemo_powerwindow_controller, you
need to create a harness model that contains the input signals that simulate
the controller in the plant model. Perform the following steps:

1 Open the slvnvdemo_powerwindow example model:

slvnvdemo_powerwindow

2 Open the power_window_control_system subsystem.

3 The Model block named control in the power_window_control_system
subsystem references the component you verify during this
example—slvnvdemo_powerwindow_controller. Load the referenced
model:

load_system('slvnvdemo_powerwindow_controller');

11-4

Verify Generated Code for a Component

4 Simulate the Model block that references
slvnvdemo_powerwindow_controller and log the input signals to the
Model block:

loggedSignalsPlant = ...

slvnvlogsignals(...

'slvnvdemo_powerwindow/power_window_control_system/control');

slvnvlogsignals stores the logged signals in loggedSignalsPlant.

5 Generate an empty harness model so that you can create new test cases
manually:

harnessModelFilePath = ...
slvnvmakeharness('slvnvdemo_powerwindow_controller');

slvnvmakeharness creates a harness model named
slvnvdemo_powerwindow_controller_harness. The harness
model includes:

• Test Unit — A Model block that references the
slvnvdemo_powerwindow_controller model.

• Inputs — A Signal Builder block that contains one test case. That test
case specifies the values of the input signals logged when the model
slvnvdemo_powerwindow was simulated.

• Test Case Explanation — A DocBlock block that describes the test case.

• Size-Type — A Subsystem block that transmits signals from the Inputs
block to the Test Unit block. The output signals from this block match
the input signals for the Model block you are verifying.

• moveUp and moveDown — Two output ports that match the output
ports from the Model block.

11-5

11 Verifying Generated Code for a Component

6 Save the name of the harness model for use later in this example:

[~,harnessModel] = fileparts(harnessModelFilePath);

7 Leave all models open for the next part of this example.

Next, create a test case that tests values for input signals to the component.

Create and Log Test Cases
Add a test case for your component to help you get closer to achieving 100%
coverage.

For this example, use the signalbuilder function to add a new test case to
the Signal Builder block in the harness model. The new test case specifies
new values for the input signals to the component:

1 Load the file that contains the data for the new test case into the MATLAB
workspace:

load('slvnvdemo_powerwindow_controller_newtestcase.mat');

The workspace variables newTestData and newTestTime contain the
test-case data.

11-6

Verify Generated Code for a Component

2 Add the new test case to the Signal Builder block in the harness model.

signalBuilderBlock = slvnvdemo_signalbuilder_block(harnessModel);

signalbuilder(signalBuilderBlock,'Append',...

newTestTime, newTestData,...

{'endstop','obstacle','driver(1)','driver(2)','driver(3)',...

'passenger(1)','passenger(2)','passenger(3)'},'New Test Case');

3 Simulate the harness model with both test cases, then log the signals to the
referenced model, and save the results:

loggedSignalsHarness = slvnvlogsignals(harnessModel);

Next, record coverage for the slvnv_powerwindow_controller model.

Merge Test Case Data
You have two sets of test case data:

• loggedSignalsPlant— Logged signals to the Model block control

• loggedSignalsHarness — Logged signals to the test cases you added to
the empty harness

To simulate all the test data at the same time, merge the two data files into a
single data file:

1 Combine the test case data:

mergedTestCases = slvnvmergedata(loggedSignalsPlant,...
loggedSignalsHarness);

2 View the merged data:

disp(mergedTestCases);

Next, simulate the referenced model with the merged data and recover
coverage for the referenced model, slvnv_powerwindow_controller.

11-7

11 Verifying Generated Code for a Component

Record Coverage for Component
Model coverage is a measure of how thoroughly a test case tests a model and
the percentage of pathways that a test case exercises. To record coverage for
the slvnv_powerwindow_controller model:

1 Create a default options object, required by the slvnvruntest function:

runopts = slvnvruntestopts;

2 Specify to simulate the model, and record coverage:

runopts.coverageEnabled = true;

3 Simulate the model using the logged input signals:

[~, covdata] = slvnvruntest('slvnvdemo_powerwindow_controller',...

mergedTestCases,runopts);

4 Display the HTML coverage report:

cvhtml('Coverage with Test Cases from Harness', covdata);

The slvnv_powerwindow_controller model achieved:

• Decision coverage: 44%

• Condition coverage: 45%

• MCDC coverage: 10%

Note For more information about decision coverage, condition coverage,
and MCDC coverage, see “Types of Model Coverage” on page 14-3.

If you do not achieve the desired coverage, continue to modify the test cases in
the Signal Builder in the harness model, log the input signals to the harness
model, and repeat the preceding steps until you achieve the desired coverage.

To achieve additional coverage to bring your model closer to 100% coverage,
modify or add test cases using the Signal Builder block in the harness model,
as described in “Create and Log Test Cases” on page 11-6.

11-8

Verify Generated Code for a Component

Execute Component in Simulation Mode
To verify that the generated code for the model produces the same results
as simulating the model, use the Code Generation Verification (CGV) API
methods. When you perform this procedure, the simulation compiles and
executes the model code using the merged test cases:

1 Create a default options object for slvnvruncgvtest:

runcgvopts = slvnvruntestopts('cgv');

2 Specify to execute the model in simulation mode:

runcgvopts.cgvConn = 'sim';

3 Execute the slvnv_powerwindow_controller model using the two test
cases and the runopts object:

cgvSim = slvnvruncgvtest('slvnvdemo_powerwindow_controller', ...
mergedTestCases, runcgvopts);

These steps save the results in the workspace variable cgvSim.

Next, execute the same model with the same test cases in Software-in-the-Loop
(SIL) mode and compare the results from both simulations.

For more information about Normal simulation mode, see “Execute the
Model”.

Execute Component in Software-in-the-Loop (SIL)
Mode
When you execute a model in Software-in-the-Loop (SIL) mode, the simulation
compiles and executes the generated code on your host computer.

To execute a model in SIL mode, you must have an Embedded Coder license.

In this section, you execute the slvnvdemo_powerwindow_controller model
in SIL mode and compare the results to the previous section, where you
executed the model in simulation mode:

1 Specify to execute the model in SIL mode:

11-9

11 Verifying Generated Code for a Component

runcgvopts.cgvConn = 'sil';

2 Execute the slvnv_powerwindow_controller model using the merged
test cases and the runopts object:

cgvSil = slvnvruncgvtest('slvnvdemo_powerwindow_controller', ...
mergedTestCases, runcgvopts);

The workspace variable cgvSil contains the results of the SIL mode
execution.

3 Compare the results in cgvSil to the results in to cgvSim (the results from
the simulation mode execution). Use the cgv.CGV.compare method to
compare the results from the two simulations:

for i=1:length(loggedSignalsHarness.TestCases)
simout = cgvSim.getOutputData(i);
silout = cgvSil.getOutputData(i);
[matchNames, ~, mismatchNames, ~] = ...

cgv.CGV.compare(simout, silout);

4 Display the results of the comparison in the MATLAB command window:

fprintf('\nTest Case(%d): %d Signals match, ...
%d Signals mismatch', i, length(matchNames), ...
length(mismatchNames));

end

For more information about Software-in-the-Loop (SIL) simulations, see
“What are SIL and PIL Simulations?”

11-10

Signal Monitoring with Model
Verification Blocks

• Chapter 12, “Using Model Verification Blocks”

• Chapter 13, “Constructing Simulation Tests Using the Verification
Manager”

12

Using Model Verification
Blocks

• “Model Verification Blocks and the Verification Manager” on page 12-2

• “Use Check Static Lower Bound Block to Check for Out-of-Bounds Signal”
on page 12-3

• “Linear System Modeling Blocks in Simulink® Control Design™” on page
12-6

12 Using Model Verification Blocks

Model Verification Blocks and the Verification Manager
Simulink Model Verification library blocks monitor time-domain signals in
your model during simulation, according to the specifications that you assign
to the blocks.

Note To see a complete description of all Simulink model verification blocks,
see the “Model Verification” category in the Simulink documentation.

You set a verification block to assert when its signal leaves the limit or range
that you specify. During simulation, when the signal crosses the limit, the
verification block can:

• Stop the simulation and bring immediate focus to that part of the model.

• Report the limit encounter with a logical signal output of its own. If the
simulation does not encounter the limit, the signal output is true. If the
simulation encounters the limit, the signal output is false.

The Verification Manager is a graphical interface in the Signal Builder dialog
box. Using this tool, you can manage all the Model Verification blocks in
your model from a central location.

If you have Simulink Control Design™ software, you can also monitor
frequency-domain characteristics such as:

• Gain and phase margins

• Peak magnitude

Note For more information about the Simulink Control Design model
verification blocks, see “Model Verification” in the Simulink Control Design
documentation.

12-2

Use Check Static Lower Bound Block to Check for Out-of-Bounds Signal

Use Check Static Lower Bound Block to Check for
Out-of-Bounds Signal

The following example uses a Check Static Lower Bound block to stop
simulation when a signal from a Sine Wave block crosses its lower bound limit.

1 Attach a Check Static Lower Bound block to the signal from a Sine Wave
block.

2 Set the Simulation stop time to 2 seconds.

3 Double-click the Sine Wave block and set the following parameters:

• Set the Amplitude to 1.

• Set the Frequency to pi radians per second.

4 Double-click the Check Static Lower Bound block and set the Lower
bound parameter to -0.8.

Enable assertion is the default. This parameter enables a verification
block for an assertion. You set the Check Static Lower Bound block to
detect a signal value of –0.8 or lower. If the signal value reaches that value
or falls below it, the simulation stops.

5 Run the simulation.

The model stops simulating after 1.295 seconds, when the output is –0.8.
The software highlights the Check Static Lower Bound block.

When the simulation stops, you see the following diagnostic message.

12-3

12 Using Model Verification Blocks

6 To verify the signal value, double-click the Scope block.

12-4

Use Check Static Lower Bound Block to Check for Out-of-Bounds Signal

7 To disable the Check Static Lower Bound block from asserting its limit,
clear the Enable assertion check box.

The block is crossed out in the model, as shown.

12-5

12 Using Model Verification Blocks

Linear System Modeling Blocks in Simulink Control Design
If you have Simulink Control Design software, you can:

• Specify bounds on linear system characteristics.

• Check that the bounds are satisfied during simulation.

For example, you can check if the linearized behavior of your model satisfied
upper and lower magnitude bounds on a Bode plot or gain and phase margins.
For more information, see the individual block reference pages in the “Model
Verification” category of the Simulink Control Design documentation.

12-6

13

Constructing Simulation
Tests Using the Verification
Manager

• “What Is the Verification Manager?” on page 13-2

• “Construct Simulation Tests Using the Verification Manager” on page 13-3

13 Constructing Simulation Tests Using the Verification Manager

What Is the Verification Manager?
The Verification Manager is a graphical interface in the Signal Builder dialog
box. Using this tool, you can manage all the Model Verification blocks in
your model from a central location.

13-2

Construct Simulation Tests Using the Verification Manager

Construct Simulation Tests Using the Verification Manager

In this section...

“View Model Verification Blocks” on page 13-3

“Enable and Disable Model Verification Blocks in a Model” on page 13-9

“Enable and Disable Model Verification Blocks in a Subsystem” on page
13-13

“Use Check Static Lower Bound Block to Check for Out-of-Bounds Signal”
on page 13-17

“Link Test Cases to Requirements Documents Using the Verification
Manager” on page 13-21

View Model Verification Blocks
Create a Simulink model that you can use to examine the Verification
Manager.

1 In the Simulink software, create the following example model.

13-3

13 Constructing Simulation Tests Using the Verification Manager

In the example model, the contents of the subsystem are as follows.

a In the Signal Builder block, create a signal group with five signals in
the group.

b Make two copies of the signal group, so that you have three signal
groups: Group 1, Group 2, Group 3.

13-4

Construct Simulation Tests Using the Verification Manager

Note A Signal Builder block provides test signals for an entire model
from one location. This model contains a Signal Builder block that feeds
five test signals to the Model Verification blocks. The model sends the
first four signals directly to Check Static Upper Bound blocks. The
model sends the fifth signal to a subsystem that contains a Check Static
Upper Bound block.

For more information on the Signal Builder block, see “Signal Groups”
in the Simulink documentation.

c To set each Check Static Upper Bound verification block to assert for an
upper bound of 1, set the Upper bound parameter to 1.

d For the following blocks, disable the assertion by clearing the Enable
assertion parameter:

• Check Static Upper Bound

• Check Static Upper Bound1

• Check Static Upper Bound2

• Check Static Upper Bound in the subsystem

These blocks are crossed out in the model.

e To enable the Check Static Upper Bound3 block, select the Enable
assertion parameter.

2 Save this model and name it ex_verif_mgr_test_signals.

3 To open the model Signal Builder dialog box, double-click the Signal
Builder block. The signals in the first group (Group 1 in this example)
are displayed.

13-5

13 Constructing Simulation Tests Using the Verification Manager

4 On the Signal Builder dialog box toolbar, select the Show Verification

Settings tool .

The Verification block settings pane and the Requirements pane are
displayed.

13-6

Construct Simulation Tests Using the Verification Manager

The Verification block settings pane lists all Model Verification blocks
in the model, grouped by subsystem. If you right-click in this pane, you
can select on of three options for viewing Model Verification blocks in this
window:

• Display > Tree format— If enabled, lists the blocks as they appear in
the model hierarchy.

13-7

13 Constructing Simulation Tests Using the Verification Manager

• Display > Overridden blocks only— If enabled, lists only the blocks
that have been disabled.

• Display > Active blocks only— If enabled, lists only the blocks that
are enabled.

Note If both Overridden blocks only and Active blocks only are
enabled, no Model Verification blocks appear. If both Overridden blocks
only and Active blocks only are disabled, all Model Verification blocks
appear.

In this example, the Verification block settings pane displays five Check
Static Upper Bound blocks. Four are in the top level of the model, and
one is in a subsystem.

The Requirements pane lists the requirements document links for the
current signal group. For details on adding requirement document links
in the Signal Builder dialog box, see “Link Test Cases to Requirements
Documents Using the Verification Manager” on page 13-21.

5 For this example, select to close the Requirements pane.

6 To display only the enabled Model Verification blocks for the current signal
group, in the Verification block settings toolbar, select the List Enabled

Verifications tool .

13-8

Construct Simulation Tests Using the Verification Manager

7 To redisplay all Model Verification blocks for the current group, click the

Show Verification Block Hierarchy tool .

Enable and Disable Model Verification Blocks in a
Model
Use the Verification Manager to enable and disable individual Model
Verification blocks in signal groups. To open the Verification Manager in the

Signal Builder dialog box, click .

The Verification block settings pane lists the Model Verification blocks in
the model. Each verification block has a status node that indicates whether
its assertion is enabled or disabled. Each verification block’s status node also
indicates whether the enabled or disabled setting applies universally or to the
active group. The following table describes the different types of status nodes.

Node Status

Verification block is disabled for this group. Click to enable
for the current group.

Verification block is enabled for the current group. Click to
disable for the current group.

Verification block is enabled for all test groups.

13-9

13 Constructing Simulation Tests Using the Verification Manager

Use the Verification Manager to enable or disable model verification blocks
in the ex_verif_mgr_test_signals model that you created in “View Model
Verification Blocks” on page 13-3.

1 In the Verification Manager, click the empty check box next to the Check
Static Upper Bound1 node to enable that node for the current active group
(Group 1).

In the Verification block settings pane, when you enable a disabled
block, you see the following change in how the block is displayed in the
model.

13-10

Construct Simulation Tests Using the Verification Manager

Because you enabled the Check Static Upper Bound1 block in the current
group, an Override label is applied to the block and it is no longer crossed
out.

2 In the Signal Builder, from the Active Group list, select Group 2.

3 Select the empty check box next to the Check Static Upper Bound2 node to
enable that block for the current group (Group 2).

13-11

13 Constructing Simulation Tests Using the Verification Manager

The Check Static Upper Bound2 block is no longer crossed out, indicating
that the block is enabled for the current group. Check Static Upper
Bound1, however, is crossed out because it is enabled in a different group.

13-12

Construct Simulation Tests Using the Verification Manager

4 Save the model with these changes.

Enable and Disable Model Verification Blocks in a
Subsystem
If you have a lot of verification blocks, it is tedious to enable and disable
blocks individually. Using the Verification Manager, you can enable and
disable blocks from context menu options. Depending on the status of the
node, you have the following options.

13-13

13 Constructing Simulation Tests Using the Verification Manager

Node
Status Context Menu Options

• Contents enable for all groups

• Contents enable by group

• Contents group enable

• Contents group disable

• Block enable by group

• Block enable for all groups

• Block group enable

• Block enable for all groups

• Block group disable

For example, assume that you define the following groups in the Verification
Manager for a model with five Model Verification blocks.

#���������������������������������������#���#����,

1 In the Verification Manager window, right-click the
ex_verif_mgr_test_signals node and select Contents enable
for all groups.

This option enables all verification blocks, for all test groups, in all
subsystems; the settings for all groups look as follows:

13-14

Construct Simulation Tests Using the Verification Manager

2 Right-click ex_verif_mgr_test_signals and select Contents enable by
group.

This option restores the individually enabled/disabled settings for each
verification block in each group.

#���������������������������������������#���#����,

3 From the Active Group list, select Group 1. Right-click
ex_verif_mgr_test_signals, and select Contents group enable.

This option individually enables all contained blocks for only Group 1.

#���������������������������������������#������-���$��"��.��������������#����,�-���$��"��.

13-15

13 Constructing Simulation Tests Using the Verification Manager

4 From the Active Group list, select Group 1. Right-click
ex_verif_mgr_test_signals and select Contents group disable.

This option individually disables all contained blocks for only Group 1.

#���������������������������������������#������-���$��"��.��������������#����,�-���$��"��.

5 From the Active Group list, select Group 1. Right-click the Check Static
Upper Bound node, and select Block enable for all groups.

This option enables the Check Static Upper Bound block for all groups.

#���������������������������������������#���#����,

6 From the Active Group list, select Group 1. Right-click the Check Static
Upper Bound node, and select Block enable by group.

This option restores the individually enabled/disabled state to this block for
all groups. The Block enable by group option lets you enable or disable
this node individually for each group.

13-16

Construct Simulation Tests Using the Verification Manager

#���������������������������������������#��#����,

7 From the Active Group list, select Group 1. Right-click the Check Static
Upper Bound node, and select Block group enable.

This option enables the Check Static Upper Bound block for this group only.

#���������������������������������������#������-���$��"��.��������������#����,�-���$��"��.

Selecting Block group disable disables the specified block for this group
only.

Use Check Static Lower Bound Block to Check for
Out-of-Bounds Signal
The following example uses a Check Static Lower Bound block to stop
simulation when a signal from a Sine Wave block crosses its lower bound limit.

1 Attach a Check Static Lower Bound block to the signal from a Sine Wave
block.

13-17

13 Constructing Simulation Tests Using the Verification Manager

2 Set the Simulation stop time to 2 seconds.

3 Double-click the Sine Wave block and set the following parameters:

• Set the Amplitude to 1.

• Set the Frequency to pi radians per second.

4 Double-click the Check Static Lower Bound block and set the Lower
bound parameter to -0.8.

Enable assertion is the default. This parameter enables a verification
block for an assertion. You set the Check Static Lower Bound block to
detect a signal value of –0.8 or lower. If the signal value reaches that value
or falls below it, the simulation stops.

5 Run the simulation.

The model stops simulating after 1.295 seconds, when the output is –0.8.
The software highlights the Check Static Lower Bound block.

When the simulation stops, you see the following diagnostic message.

13-18

Construct Simulation Tests Using the Verification Manager

6 To verify the signal value, double-click the Scope block.

13-19

13 Constructing Simulation Tests Using the Verification Manager

7 To disable the Check Static Lower Bound block from asserting its limit,
clear the Enable assertion check box.

The block is crossed out in the model, as shown.

13-20

Construct Simulation Tests Using the Verification Manager

Link Test Cases to Requirements Documents Using
the Verification Manager
You can link requirements documents to test cases and their corresponding
Model Verification blocks through the Verification Manager Requirements
pane in the Signal Builder.

1 To display the Requirements pane in the Signal Builder dialog box:

a Click the Show verification settings button ().

b Click the Requirements display button ().

2 In the Requirements pane, right-click anywhere.

3 From the context menu, select Edit/Add Links.

The Requirements dialog box opens.

4 When you browse and select a requirements document, the RMI stores the
document path as specified by the Document file reference option on the
Requirements Settings dialog box, Selection Linking tab.

For information about which setting to use for your working environment,
see “Document Path Storage” on page 5-15.

5 Add links to requirements documents, as described in “Link to
Requirements Document Using Selection-Based Linking” on page 2-11.

The names of the linked requirements appear in the Requirements pane.

13-21

13 Constructing Simulation Tests Using the Verification Manager

6 To view the requirements document in its native editor, right-click a
requirement link and select View.

7 Optionally, to delete a requirement link, right-click the link and select
Delete.

13-22

Model Coverage Analysis

• Chapter 14, “Model Coverage Definition”

• Chapter 15, “Model Objects That Receive Model Coverage”

• Chapter 16, “Setting Model Coverage Options”

• Chapter 17, “Coverage Collection During Simulation”

• Chapter 18, “Results Review”

• Chapter 19, “Excluding Model Objects From Coverage”

• Chapter 20, “Automating Model Coverage Tasks”

14

Model Coverage Definition

• “Model Coverage” on page 14-2

• “Types of Model Coverage” on page 14-3

• “Simulink Optimizations and Model Coverage” on page 14-10

14 Model Coverage Definition

Model Coverage
Model coverage helps you validate your model tests by measuring how
thoroughly the model objects are tested. Model coverage calculates how much
a model test case exercises simulation pathways through a model. Model
coverage is a measure of how thoroughly a test case tests a model and the
percentage of pathways that a test case exercises. Model coverage helps you
validate your model tests.

Model coverage analyzes the execution of the following types of model objects
that directly or indirectly determine simulation pathways through your model:

• Simulink blocks

• Models referenced in Model blocks

• The states and transitions of Stateflow charts

During a simulation run, the tool records the behavior of the covered objects,
states, and transitions. At the end of the simulation, the tool reports the
extent to which the run exercised potential simulation pathways through each
covered object in the model.

The Simulink Verification and Validation software can only collect coverage
for a model if its simulation mode is set to Normal. If the simulation mode
is set to any mode other than Normal, coverage will not be measured during
simulation.

For the types of coverage that model coverage performs, see “Types of Model
Coverage” on page 14-3. For an example of a model coverage report, see
“Top-Level Model Coverage Report” on page 18-11.

14-2

Types of Model Coverage

Types of Model Coverage
Simulink Verification and Validation software can perform several types
of coverage analysis:

• “Cyclomatic Complexity” on page 14-3

• “Decision Coverage (DC)” on page 14-4

• “Condition Coverage (CC)” on page 14-4

• “Modified Condition/Decision Coverage (MCDC)” on page 14-4

• “Lookup Table Coverage” on page 14-6

• “Saturate on Integer Overflow Coverage” on page 14-6

• “Signal Range Coverage” on page 14-7

• “Signal Size Coverage” on page 14-7

• “Simulink® Design Verifier™ Coverage” on page 14-8

Cyclomatic Complexity
Cyclomatic complexity is a measure of the structural complexity of a model. It
approximates the McCabe complexity measure for code generated from the
model. The McCabe complexity measure is slightly higher on the generated
code due to error checks that the model coverage analysis does not consider.

To compute the cyclomatic complexity of an object (such as a block, chart, or
state), model coverage uses the following formula:

c on

N
= −∑()1

1

N is the number of decision points that the object represents and on is
the number of outcomes for the nth decision point. The tool adds 1 to the
complexity number for atomic subsystems and Stateflow charts.

For an example of cyclomatic complexity data in a model coverage report, see
“Cyclomatic Complexity” on page 18-21.

14-3

14 Model Coverage Definition

Decision Coverage (DC)
Decision coverage analyzes elements that represent decision points in a
model, such as a Switch block or Stateflow states. For each item, decision
coverage determines the percentage of the total number of simulation paths
through the item that the simulation actually traversed.

For an example of decision coverage data in a model coverage report, see
“Decisions Analyzed” on page 18-23.

Condition Coverage (CC)
Condition coverage analyzes blocks that output the logical combination
of their inputs (for example, the Logical Operator block) and Stateflow
transitions. A test case achieves full coverage when it causes each input to
each instance of a logic block in the model and each condition on a transition
to be true at least once during the simulation, and false at least once during
the simulation. Condition coverage analysis reports whether the test case
fully covered the block for each block in the model.

When you collect coverage for a model, you may not be able to achieve 100%
condition coverage. For example, if you specify to short-circuit logic blocks, by
selecting Treat Simulink Logic blocks as short-circuited in the Coverage
Settings dialog box, you might not be able to achieve 100% condition coverage
for that block. See “Treat Simulink logic blocks as short-circuited” on page
16-14 for more information.

For an example of condition coverage data in a model coverage report, see
“Conditions Analyzed” on page 18-24.

Modified Condition/Decision Coverage (MCDC)
Modified condition/decision coverage analysis by the Simulink Verification
and Validation software extends the decision and condition coverage
capabilities. It analyzes blocks that output the logical combination of their
inputs and Stateflow transitions to determine the extent to which the test
case tests the independence of logical block inputs and transition conditions.

• A test case achieves full coverage for a block when a change in one input,
independent of any other inputs, causes a change in the block’s output.

14-4

Types of Model Coverage

• A test case achieves full coverage for a Stateflow transition when there is
at least one time when a change in the condition triggers the transition for
each condition.

If your model contains blocks that define expressions that have different
types of logical operators and more than 12 conditions, the software cannot
record MCDC coverage.

Because the Simulink Verification and Validation MCDC coverage may not
achieve full decision or condition coverage, you can achieve 100% MCDC
coverage without achieving 100% decision coverage.

Some Simulink objects support MCDC coverage, some objects support only
condition coverage, and some objects support only decision coverage. The table
in “Model Objects That Receive Coverage” on page 15-2 lists which objects
receive which types of model coverage. For example, the Combinatorial Logic
block can receive decision coverage and condition coverage, but not MCDC
coverage.

To achieve 100% MCDC coverage for your model, as defined by the
DO-178C/DO-331 standard, in the Coverage Settings dialog box, collect
coverage for all of the following coverage metrics:

• Condition Coverage

• Decision Coverage

• MCDC Coverage

When you collect coverage for a model, you may not be able to achieve 100%
MCDC coverage. For example, if you specify to short-circuit logic blocks, you
may not be able to achieve 100% MCDC coverage for that block.

If you run the test cases independently and accumulate all the coverage
results, you can determine if your model adheres to the modified condition and
decision coverage standard. For more information about the DO-178C/DO-331
standard, see “DO-178C/DO-331 Checks”.

For an example of MCDC coverage data in a model coverage report, see
“MCDC Analysis” on page 18-25. For an example of accumulated coverage
results, see “Cumulative Coverage” on page 18-26.

14-5

14 Model Coverage Definition

Lookup Table Coverage
Lookup table coverage (LUT) examines blocks, such as the 1-D Lookup Table
block, that output information from inputs in a table of inputs and outputs,
interpolating between or extrapolating from table entries. Lookup table
coverage records the frequency that table lookups use each interpolation
interval. A test case achieves full coverage when it executes each interpolation
and extrapolation interval at least once. For each lookup table block in
the model, the coverage report displays a colored map of the lookup table,
indicating each interpolation. If the total number of breakpoints of an n-D
Lookup Table block exceeds 1,500,000, the software cannot record coverage
for that block.

For an example of lookup table coverage data in a model coverage report, see
“N-Dimensional Lookup Table” on page 18-29.

Note Configure lookup table coverage only at the start of a simulation. If
you tune a parameter that affects lookup table coverage at run time, the
coverage settings for the affected block are not updated.

Saturate on Integer Overflow Coverage
Saturate on integer overflow coverage examines blocks, such as the Abs block,
with the saturate on integer overflow parameter selected. Only blocks with
this parameter selected receive saturate on integer overflow coverage.

Saturate on integer overflow coverage records the number of times the block
saturates on integer overflow.

A test case achieves full coverage when the blocks saturates on integer
overflow at least once and does not saturate at least once.

For an example of saturate on integer overflow coverage data in a model
coverage report, see “Saturate on Integer Overflow Analysis” on page 18-36.

14-6

Types of Model Coverage

Signal Range Coverage
Signal range coverage records the minimum and maximum signal values at
each block in the model, as measured during simulation. Only blocks with
output signals receive signal range coverage.

If the total number of signals in your model exceeds 65535, or your model
contains a signal whose width exceeds 65535, the software cannot record
signal range coverage.

For an example of signal range coverage data in a model coverage report, see
“Signal Range Analysis” on page 18-37.

Note When you create cumulative coverage for reusable subsystems or
Stateflow constructs with single range coverage, the cumulative coverage has
the largest possible range of signal values. For more information, see “Obtain
Cumulative Coverage for Reusable Subsystems and Stateflow Constructs”
on page 20-9.

Signal Size Coverage
Signal size coverage records the minimum, maximum, and allocated size for
all variable-size signals in a model. Only blocks with variable-size output
signals are included in the report.

If the total number of signals in your model exceeds 65535, or your model
contains a signal whose width exceeds 65535, the software cannot record
signal size coverage.

For an example of signal size coverage data in a model coverage report, see
“Signal Size Coverage for Variable-Dimension Signals” on page 18-39.

For more information about variable-size signals, see “Variable-Size Signal
Basics”.

14-7

14 Model Coverage Definition

Simulink Design Verifier Coverage
The Simulink Verification and Validation software collects model coverage
data for the following Simulink Design Verifier blocks and MATLAB for code
generation functions:

Simulink Design Verifier blocks MATLAB for code generation
functions

Test Condition sldv.condition

Test Objective sldv.test

Proof Assumption sldv.assume

Proof Objective sldv.prove

If you do not have a Simulink Design Verifier license, you can collect model
coverage for a model that contains these blocks or functions, but you cannot
analyze the model using the Simulink Design Verifier software.

By adding one or more Simulink Design Verifier blocks or functions into your
model, you can:

• Check the results of a Simulink Design Verifier analysis, run generated
test cases, and use the blocks to observe the results.

• Define model requirements using the Test Objective block and verify
the results with model coverage data that the software collected during
simulation.

• Analyze the model, create a test harness, and simulate the harness with
the Test Objective block to collect model coverage data.

• Analyze the model and use the Proof Assumption block to verify any
counterexamples that the Simulink Design Verifier identifies.

If you specify to collect Simulink Design Verifier coverage:

• The software collects coverage for the Simulink Design Verifier blocks
and functions.

• The software checks the data type of the signal that links to each Simulink
Design Verifier block. If the signal data type is fixed point, the block

14-8

Types of Model Coverage

parameter must also be fixed point. If the signal data type is not fixed
point, the software tries to convert the block parameter data type. If the
software cannot convert the block parameter data type, the software
reports an error and you must explicitly assign the block parameter data
type to match the signal.

• If your model contains a Verification Subsystem block, the software only
records coverage for Simulink Design Verifier blocks in the Verification
Subsystem block; it does not record coverage for any other blocks in the
Verification Subsystem.

If you do not specify to collect Simulink Design Verifier coverage, the software
does not check the data types for any Simulink Design Verifier blocks and
functions in your model and does not collect coverage.

For an example of coverage data for Simulink Design Verifier blocks or
functions in a model coverage report, see “Simulink® Design Verifier™
Coverage” on page 18-40.

14-9

14 Model Coverage Definition

Simulink Optimizations and Model Coverage
In the Configuration Parameters dialog box Optimization pane, there are
three Simulink optimization parameters that can affect your model coverage
data:

In this section...

“Inline parameters” on page 14-10

“Block reduction” on page 14-10

“Conditional input branch execution” on page 14-11

Inline parameters
To transform tunable model parameters into constant values for code
generation, in the Configuration Parameters dialog box, on the Optimization
> Signals and Parameters pane, select Inline parameters. When you
enable this option, you cannot change the values of block parameters during
simulation.

When the parameters are transformed into constants, Simulink may
eliminate certain decisions in your model. You cannot achieve coverage for
eliminated decision, so the coverage report displays 0/0 for those decisions.

Block reduction
To achieve faster execution during model simulation and in generated code, in
the Configuration Parameters dialog box, on the Optimization pane, select
the Block reduction parameter. The Simulink software collapses certain
groups of blocks into a single, more efficient block, or removes them entirely.

One of the model coverage options, Force block reduction off, allows you to
ignore the Block reduction parameter when collecting model coverage.

If you do not select the Block reduction parameter, or if you select Force
block reduction off, the Simulink Verification and Validation software
provides coverage data for every block in the model that collects coverage.

14-10

Simulink® Optimizations and Model Coverage

If you select the Block reduction parameter and do not set Force block
reduction off, the coverage report lists the reduced blocks that would have
collected coverage.

Conditional input branch execution
To improve model execution when the model contains Switch and Multiport
Switch blocks, in the Configuration Parameters dialog box, on the
Optimization pane, select Conditional input branch execution. If you
select this parameter, the simulation executes only blocks that are required to
compute the control input and the data input selected by the control input.

When Conditional input branch execution is enabled, instead of executing all
blocks driving the Switch block input ports at each time step, only the blocks
required to compute the control input and the data input selected by the
control input execute.

Several considerations affect or limit Switch block optimization:

• Only blocks with -1 (inherited) or inf (Constant) sample time can be
optimized.

• Blocks with outputs flagged as test points cannot be optimized.

• Multirate blocks cannot be optimized.

• Blocks with states cannot be optimized.

• Only S-functions with the SS_OPTION_CAN_BE_CALLED_CONDITIONALLY
option enabled can be optimized.

For example, if your model has a Switch block with output flagged as a test
point, such as when a Scope block is attached, that Switch block is not
executed, and the model coverage data is incomplete. If you have a model
with Switch blocks and you want to verify that the model coverage data is
complete, clear Conditional input branch execution.

14-11

14 Model Coverage Definition

14-12

15

Model Objects That Receive
Model Coverage

15 Model Objects That Receive Model Coverage

Model Objects That Receive Coverage
Certain Simulink objects can receive any type of model coverage. Other
Simulink objects can receive only certain types of coverage, as the following
table shows. Click a link in the first column to get more detailed information
about coverage for specific model objects.

For Stateflow states, events, and state temporal logic decisions, model
coverage provides only decision coverage. For Stateflow transitions, model
coverage provides decision, condition, and MCDC coverage. For more
information, see “Model Coverage for Stateflow Charts” on page 17-40.

Model Object Decision Condition MCDC
Lookup
Table

Simulink
Design
Verifier

“Abs” on page 15-5

“Bias” on page 15-6

“Combinatorial Logic” on page
15-7

“Data Type Conversion” on
page 15-7

“Dead Zone” on page 15-8

“Direct Lookup Table (n-D)”
on page 15-9

“Discrete Filter” on page
15-10

“Discrete FIR Filter” on page
15-10

“Discrete-Time Integrator” on
page 15-10 (when saturation
limits are enabled or reset)

“Discrete Transfer Fcn” on
page 15-12

“Dot Product” on page 15-12

15-2

Model Objects That Receive Coverage

Model Object Decision Condition MCDC
Lookup
Table

Simulink
Design
Verifier

“Enabled Subsystem” on page
15-13

“Enabled and Triggered
Subsystem” on page 15-13

“Fcn” on page 15-15 (Boolean
operators only)

“For Iterator, For Iterator
Subsystem” on page 15-15

“Gain” on page 15-16

“If, If Action Subsystem” on
page 15-16

“Interpolation Using
Prelookup” on page 15-17

“Library-Linked Objects” on
page 15-18

“Logical Operator” on page
15-18

“1-D Lookup Table” on page
15-19

“2-D Lookup Table” on page
15-19

“n-D Lookup Table” on page
15-20

“Math Function” on page
15-21

“MATLAB Function” on page
15-22

“MinMax” on page 15-22

15-3

15 Model Objects That Receive Model Coverage

Model Object Decision Condition MCDC
Lookup
Table

Simulink
Design
Verifier

“Model” on page 15-23

See also “Triggered Models”
on page 15-32.

“Multiport Switch” on page
15-23

“PID Controller, PID
Controller (2 DOF)” on
page 15-24

“Product” on page 15-24

“Proof Assumption” on page
15-25

“Proof Objective” on page
15-25

“Rate Limiter” on page 15-26 (Relative
to slew
rates)

“Relay” on page 15-26

“Saturation” on page 15-27

“Saturation Dynamic” on page
15-28

“Simulink® Design Verifier™
Functions in MATLAB
Function Blocks” on page
15-28

Stateflow charts

Stateflow state transition
tables

“Sqrt, Signed Sqrt, Reciprocal
Sqrt” on page 15-29

15-4

Model Objects That Receive Coverage

Model Object Decision Condition MCDC
Lookup
Table

Simulink
Design
Verifier

“Sum, Add, Subtract, Sum of
Elements” on page 15-29

“Switch” on page 15-30

“SwitchCase, SwitchCase
Action Subsystem” on page
15-30

“Test Condition” on page
15-31

“Test Objective” on page 15-31

“Triggered Models” on page
15-32

“Triggered Subsystem” on
page 15-33

“Truth Table” on page 15-34

“Unary Minus” on page 15-34

“Weighted Sample Time
Math” on page 15-34

“While Iterator, While
Iterator Subsystem” on page
15-35

Abs
The Abs block receives decision coverage. Decision coverage is based on:

• Input to the block being less than zero.

• Selection of the Saturate on integer overflow parameter.

15-5

15 Model Objects That Receive Model Coverage

• Data type of the input signal.

For input to the block being less than zero, the decision coverage measures:

• The number of time steps that the block input is less than zero, indicating
a true decision.

• The number of time steps the block input is not less than zero, indicating
a false decision.

If the Saturate on integer overflow parameter is selected, the decision
coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage is 100%. If no time steps are true, or if no time steps are false,
decision coverage is 50%. The software treats each element of a vector or
matrix as a separate coverage measurement.

If the input data type to the Abs block is uint8, uint16, or uint32, the
Simulink Verification and Validation software reports no coverage for the
block. The software sets the block output equal to the block input without
making a decision. If the input data type to the Abs block is Boolean, an
error occurs.

Bias
The Bias block receives decision coverage. If the Saturate on integer
overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

15-6

Model Objects That Receive Coverage

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Combinatorial Logic
The Combinatorial Logic block receives decision and condition coverage.
Decision coverage is based on achieving each output row of the truth table.
The decision coverage measures the number of time steps that each output
row of the truth table is set to the block output.

The condition coverage measures the number of time steps that each input
is false (equal to zero) and the number of times each input is true (not equal
to zero). If the Combinatorial Logic block has a single input element, the
Simulink Verification and Validation software reports only decision coverage,
because decision and condition coverage are equivalent.

If all truth table values are set to the block output for at least one time step,
decision coverage is 100%. Otherwise, the software reports the coverage as
the number of truth table values output during at least one time step, divided
by the total number of truth table values. Because this block always has at
least one value in the truth table as output, the minimum coverage reported
is one divided by the total number of truth table values.

If all block inputs are false for at least one time step and true for at least one
time step, condition coverage is 100%. Otherwise, the software reports the
coverage as achieving a false value at each input for at least one time step,
plus achieving a true value for at least one time step, divided by two raised
to the power of the total number of inputs (i.e., 2^number_of_inputs). The
minimum coverage reported is the total number of inputs divided by two
raised to the power of the total number of inputs.

Data Type Conversion
The Data Type Conversion block receives decision coverage. If the Saturate
on integer overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

15-7

15 Model Objects That Receive Model Coverage

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Dead Zone
The Dead Zone block receives decision coverage. The Simulink Verification
and Validation software reports decision coverage for these parameters:

• Start of dead zone

• End of dead zone

• Saturate on integer overflow

The Start of dead zone parameter specifies the lower limit of the dead zone.
For the Start of dead zone parameter, decision coverage measures:

• The number of time steps that the block input is greater than or equal to
the lower limit, indicating a true decision.

• The number of time steps that the block input is less than the lower limit,
indicating a false decision.

The End of dead zone parameter specifies the upper limit of the dead zone.
For the End of dead zone, decision coverage measures:

• The number of time steps that the block input is greater than the upper
limit, indicating a true decision.

• The number of time steps that the block input is less than or equal to the
upper limit, indicating a false decision.

When the upper limit is true, the software does not measure Start of dead
zone coverage for that time step. Therefore, the total number of Start of

15-8

Model Objects That Receive Coverage

dead zone decisions equals the number of time steps that the End of dead
zone is false.

If the Saturate on integer overflow parameter is selected, the decision
coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for each of the individual decisions for the Dead Zone block is 100%.
If no time steps are true, or if no time steps are false, decision coverage is
50%. The software treats each element of a vector or matrix as a separate
coverage measurement.

Direct Lookup Table (n-D)
The Direct Lookup Table (n-D) block receives lookup table coverage. For an
n-dimensional lookup table, the number of output break points is the product
of all the number of break points for each table dimension.

Lookup table coverage measures:

• The number of times during simulation that each combination of dimension
input values is between each of the break points.

• The number of times during simulation that each combination of dimension
input values is below the lowest break point and above the highest break
point for each table dimension.

The total number of coverage points for an n-dimensional lookup table is the
product of the number of break points in each table dimension plus one. In
the coverage report, an increasing white-to-green color scale, with six evenly
spaced data ranges starting with zero, indicates the number of time steps that
the software measures each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the
total interpolation and extrapolation points that achieve a measurement of

15-9

15 Model Objects That Receive Model Coverage

at least one time step during simulation between a break point or beyond
the end points.

Discrete Filter
The Discrete Filter block receives decision coverage. If the Saturate on
integer overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Discrete FIR Filter
The Discrete FIR Filter block receives decision coverage. If the Saturate on
integer overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Discrete-Time Integrator
The Discrete-Time Integrator block receives decision coverage. The Simulink
Verification and Validation software reports decision coverage for these
parameters:

15-10

Model Objects That Receive Coverage

• External reset

• Limit output

• Saturate on integer overflow

If you set External reset to none, the Simulink Verification and Validation
software does not report decision coverage for the reset decision. Otherwise,
the decision coverage measures:

• The number of time steps that the block output is reset, indicating a true
decision.

• The number of time steps that the block output is not reset, indicating
a false decision.

If you do not select Limit output, the software does not report decision
coverage for that decision. Otherwise, the software reports decision coverage
for the Lower saturation limit and the Upper saturation limit.

For the Upper saturation limit, decision coverage measures:

• The number of time steps that the integration result is greater than or
equal to the upper limit, indicating a true decision.

• The number of time steps that the integration result is less than the upper
limit, indicating a false decision.

For the Lower saturation limit, decision coverage measures

• The number of time steps that the integration result is less than or equal to
the lower limit, indicating a true decision.

• The number of time steps that the integration result is greater than the
lower limit, indicating a false decision.

For a time step when the upper limit is true, the software does not measure
Lower saturation limit coverage. Therefore, the total number of lower limit
decisions equals the number of time steps that the upper limit is false.

If the Saturate on integer overflow parameter is selected, the decision
coverage measures:

15-11

15 Model Objects That Receive Model Coverage

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for each of the individual decisions for the block is 100%. If no time
steps are true, or if no time steps are false, decision coverage is 50%. The
software treats each element of a vector or matrix as a separate coverage
measurement.

Discrete Transfer Fcn
The Discrete Transfer Fcn block receives decision coverage. If the Saturate
on integer overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Dot Product
The Dot Product block receives decision coverage. If the Saturate on integer
overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps

15-12

Model Objects That Receive Coverage

are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Enabled Subsystem
The Enabled Subsystem block receives decision, condition, and MCDC
coverage.

Decision coverage measures:

• The number of time steps that the block is enabled, indicating a true
decision.

• The number of time steps that the block is disabled, indicating a false
decision.

If at least one time step is true and at least one time step is false, decision
coverage is 100%. If no time steps are true, or if no time steps are false,
decision coverage is 50%.

The Simulink Verification and Validation software measures condition
coverage for the enable input only if the enable input is a vector. For the
enable input, condition coverage measures the number of time steps each
element of the enable input is true and the number of time steps each element
of the enable input is false. The software reports condition coverage based on
the total number of possible conditions and how many are true for at least one
time step and how many are false for at least one time step.

The software measures MCDC coverage for the enable input only if the enable
input is a vector. Because the enable of the subsystem is an OR of the vector
inputs, MCDC coverage is 100% if, during at least one time step, each vector
enable input is exclusively true and if, during at least one time step, all vector
enable inputs are false. For MCDC coverage measurement, the software
treats each element of the vector as a separate condition.

Enabled and Triggered Subsystem
The Enabled and Triggered Subsystem block receives decision, condition, and
MCDC coverage. Decision coverage measures:

15-13

15 Model Objects That Receive Model Coverage

• The number of time steps that a trigger edge occurs while the block is
enabled, indicating a true decision.

• The number of time steps that a trigger edge does not occur while the block
is enabled, or the block is disabled, indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage is 100%. If no time steps are true, or if no time steps are false,
decision coverage is 50%.

The software measures condition coverage for the enable input and for the
trigger input separately:

• For the enable input, condition coverage measures the number of time
steps the enable input is true and the number of time steps the enable
input is false.

• For the trigger input, condition coverage measures the number of time
steps the trigger edge occurs, indicating true, and the number of time steps
the trigger edge does not occur, indicating false.

The software reports condition coverage based on the total number of possible
conditions and how many conditions are true for at least one time step and
how many are false for at least one time step. The software treats each
element of a vector as a separate condition coverage measurement.

The software measures MCDC coverage for the enable input and for the
trigger input in combination. Because the enable input of the subsystem is an
AND of these two inputs, MCDC coverage is 100% if all of the following occur:

• During at least one time step, both inputs are true.

• During at least one time step, the enable input is true and the trigger edge
is false.

• During one time step, the enable input is false and the trigger edge is true.

The software treats each vector element as a separate MCDC coverage
measurement. It measures each trigger edge element against each enable
input element. However, if the number of elements in both the trigger and
enable inputs exceeds 12, the software does not report MCDC coverage.

15-14

Model Objects That Receive Coverage

Fcn
The Fcn block receives condition and MCDC coverage. The Simulink
Verification and Validation software reports condition or MCDC coverage for
Fcn blocks only if the top-level operator is Boolean (&&, ||, or !).

Condition coverage is based on input values or arithmetic expressions that are
inputs to Boolean operators in the block. The condition coverage measures:

• The number of time steps that each input to a Boolean operator is true
(not equal to zero).

• The number of time steps that each input to a Boolean operator is false
(equal to zero).

If all Boolean operator inputs are false for at least one time step and true for
at least one time step, condition coverage is 100%. Otherwise, the software
reports condition coverage based on the total number of possible conditions
and how many are true for at least one time step and how many are false for
at least one time step.

The software measures MCDC coverage for Boolean expressions within the
Fcn block. If, during at least one time step, each condition independently
sets the output of the expression to true and if, during at least one time
step, each condition independently sets the output of the expression to false,
MCDC coverage is 100%. Otherwise, the software reports MCDC coverage
based on the total number of possible conditions and how many times each
condition independently sets the output to true during at least one time
step and how many conditions independently set the output to false during
at least one time step.

For Iterator, For Iterator Subsystem
The For Iterator block and For Iterator Subsystem receive decision coverage.
The Simulink Verification and Validation software measures decision
coverage for the loop condition value, which is determined by one of the
following:

• The iteration value being at or below the iteration limit, indicated as true.

• The iteration value being above the iteration limit, indicated as false.

15-15

15 Model Objects That Receive Model Coverage

The software reports the total number of times that each loop condition
evaluates to true and to false. If the loop condition evaluates to true at least
once and false at least once, decision coverage is 100%. If no loop conditions
are true, or if no loop conditions are false, decision coverage is 50%.

Gain
The Gain block receives decision coverage. If the Saturate on integer
overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

If, If Action Subsystem
The If block that causes an If Action Subsystem to execute receives condition,
decision, and MCDC coverage:

• The software measures decision coverage for the if condition and all
elseif conditions defined in the If block.

• If the if condition or any of the elseif conditions contains a logical
expression with multiple conditions, such as u1 & u2 & u3, the software
also measures condition and MCDC coverage for each condition in the
expression, u1, u2, and u3 in the preceding example.

The software does not directly measure the else condition. When there are
no elseif conditions, the else condition is the direct complement of the if
condition, or the else condition is the direct complement of the last elseif
condition.

The software reports the total number of time steps that each if and elseif
condition evaluates to true and to false. If the if or elseif condition evaluates

15-16

Model Objects That Receive Coverage

to true at least once, and evaluates to false at least once, decision coverage is
100%. If no if or elseif conditions are true, or if no if or elseif conditions
are false, decision coverage is 50%. If the previous if or elseif condition
never evaluates as false, an elseif condition can have 0% decision coverage.

Interpolation Using Prelookup
The Interpolation Using Prelookup block receives lookup table coverage. For
an n-D lookup table, the number of output break points equals the product
of all the number of break points for each table dimension. The lookup table
coverage measures:

• The number of times during simulation that each combination of dimension
input values is between each of the break points.

• The number of times during simulation that each combination of dimension
input values is below the lowest break point and above the highest break
point for each table dimension.

The total number of coverage points for an n-dimensional lookup table is the
product of the number of break points in each table dimension plus one. In
the coverage report, an increasing white-to-green color scale, with six evenly
spaced data ranges starting with zero, indicates the number of time steps that
the software measures each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the
total interpolation and extrapolation points that achieve a measurement of
at least one time step during simulation between a break point or beyond
the end points.

The Interpolation Using Prelookup block also receives decision coverage.
If the Saturate on integer overflow parameter is selected, the decision
coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

15-17

15 Model Objects That Receive Model Coverage

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Library-Linked Objects
Simulink blocks and Stateflow charts that are linked to library objects receive
the same coverage that they would receive if they were not linked to library
objects. The Simulink Verification and Validation software records coverage
individually for each library object in the model. If your model contains
multiple instances of the same library object, each instance receives its own
coverage data.

Logical Operator
The Logical Operator block receives condition and MCDC coverage. The
Simulink Verification and Validation software measures condition coverage
for each input to the block. The condition coverage measures:

• The number of time steps that each input is true (not equal to zero).

• The number of time steps that each input is false (equal to zero).

If all block inputs are false for at least one time step and true for at least
one time step, the software condition coverage is 100%. Otherwise, the
software reports the condition coverage based on the total number of possible
conditions and how many are true at least one time step and how many are
false at least one time step.

The software measures MCDC coverage for all inputs to the block. If,
during at least one time step, each condition independently sets the output
of the block to true and if, during at least one time step, each condition
independently sets the output of the block to false, MCDC coverage is
100%. Otherwise, the software reports the MCDC coverage based on the
total number of possible conditions and how many times each one of them
independently set the output to true for at least one time step and how many
independently set the output to false for at least one time step.

15-18

Model Objects That Receive Coverage

1-D Lookup Table
The 1-D Lookup Table block receives lookup table coverage; for a
one-dimensional lookup table, the number of input and output break points is
equal. Lookup table coverage measures:

• The number of times during simulation that the input and output values
are between each of the break points.

• The number of times during simulation that the input and output values
are below the lowest break point and above the highest break point.

The total number of coverage points for a one-dimensional lookup table is
the number of break points in the table plus one. In the coverage report, an
increasing white-to-green color scale, with six evenly spaced data ranges
starting with zero, indicates the number of time steps that the software
measures each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the
total interpolation and extrapolation points that achieve a measurement of
at least one time step during simulation between a break point or beyond
the end points.

The 1-D Lookup Table block also receives decision coverage. If the Saturate
on integer overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

2-D Lookup Table
The 2-D Lookup Table block receives lookup table coverage. For a
two-dimensional lookup table, the number of output break points equals the

15-19

15 Model Objects That Receive Model Coverage

number of row break points multiplied by the number of column inputs.
Lookup table coverage measures:

• The number of times during simulation that each combination of row input
and column input values is between each of the break points.

• The number of times during simulation that each combination of row input
and column input values is below the lowest break point and above the
highest break point for each row and column.

The total number of coverage points for a two-dimensional lookup table is the
number of row break points in the table plus one, multiplied by the number
of column break points in the table plus one. In the coverage report, an
increasing white-to-green color scale, with six evenly spaced data ranges
starting with zero, indicates the number of time steps that the software
measures each interpolation or extrapolation point.

The 2-D Lookup Table block also receives decision coverage. If the Saturate
on integer overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

n-D Lookup Table
The n-D Lookup Table block receives lookup table coverage. For an
n-dimensional lookup table, the number of output break points equals the
product of all the number of break points for each table dimension. Lookup
table coverage measures:

• The number of times during simulation that each combination of dimension
input values is between each of the break points.

15-20

Model Objects That Receive Coverage

• The number of times during simulation that each combination of dimension
output values is below the lowest break point and above the highest break
point for each table dimension.

The total number of coverage points for an n-dimensional lookup table is the
product of the number of break points in each table dimension plus one. In
the coverage report, an increasing white-to-green color scale, with six evenly
spaced data ranges starting with zero, indicates the number of time steps that
the software measures each interpolation or extrapolation point.

The software determines a percentage of total coverage by measuring the
total interpolation and extrapolation points that achieve a measurement of
at least one time step during simulation between a break point or beyond
the end points.

The n-D Lookup Table block also receives decision coverage. If the Saturate
on integer overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

Math Function
The Math Function block receives decision coverage. If the Saturate on
integer overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

15-21

15 Model Objects That Receive Model Coverage

MATLAB Function
For information about the type of coverage that the Simulink Verification
and Validation software reports for the MATLAB Function block, see “Model
Coverage for MATLAB Functions” on page 17-22.

MinMax
The MinMax block receives decision coverage based on:

• Passing each input to the output of the block.

• Selection of the Saturate on integer overflow parameter.

For decision coverage based on passing each input to the output of the block,
the coverage measures the number of time steps that the simulation passes
each input to the block output. The number of decision points is based on the
number of inputs to the block and whether they are scalar, vector, or matrix.

If all inputs are passed to the block output for at least one time step, the
Simulink Verification and Validation software reports the decision coverage
as 100%. Otherwise, the software reports the coverage as the number of
inputs passed to the output during at least one time step, divided by the
total number of inputs.

If the Saturate on integer overflow parameter is selected, the decision
coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

15-22

Model Objects That Receive Coverage

Model
The Model block does not receive coverage directly; the model that the block
references receives coverage. If the simulation mode for the referenced model
is set to Normal, the Simulink Verification and Validation software reports
coverage for all objects within the referenced model that receive coverage. If
the simulation mode is set to a value other than Normal, the software cannot
measure coverage for the referenced model.

In the Coverage Settings dialog box, select the referenced models for which
you want to report coverage. The software generates a coverage report for
each referenced model you select.

If your model contains multiple instances of the same referenced model,
the software records coverage for all instances of that model where the
simulation mode of the Model block is set to Normal. The coverage report
for that referenced model combines the coverage data for all Normal mode
instances of that model.

The coverage reports for referenced models are linked from a summary report
for the parent model.

Note For details on how to select referenced models to report coverage, see
“Coverage for referenced models” on page 16-4.

Multiport Switch
The Multiport Switch block receives decision coverage based on:

• Passing each input, excluding the first control input, to the output of the
block.

• Selection of the Saturate on integer overflow parameter.

For decision coverage based on passing each input, excluding the first control
input, to the output of the block, the coverage measures the number of time
steps that each input is passed to the block output. The number of decision
points is based on the number of inputs to the block and whether the control
input is scalar or vector.

15-23

15 Model Objects That Receive Model Coverage

If all inputs, excluding the first control input, are passed to the block output
for at least one time step, decision coverage is 100%. Otherwise, the Simulink
Verification and Validation software reports coverage as the number of
inputs passed to the output during at least one time step, divided by the
total number of inputs minus one.

If the Saturate on integer overflow parameter is selected, the decision
coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

PID Controller, PID Controller (2 DOF)
The PID Controller and PID Controller (2 DOF) blocks receives decision
coverage. If the Saturate on integer overflow parameter is selected, the
decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Product
The Product block receives decision coverage. If the Saturate on integer
overflow parameter is selected, the decision coverage measures:

15-24

Model Objects That Receive Coverage

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Proof Assumption
The Proof Assumption block receives Simulink Design Verifier coverage.
Simulink Design Verifier coverage is based on the points and intervals
defined in the block dialog box. Simulink Design Verifier coverage measures
the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of
points or intervals defined in the Proof Assumption block.

If all points and intervals defined in the block are satisfied for at least
one time step, Simulink Design Verifier coverage is 100%. Otherwise, the
Simulink Verification and Validation software reports coverage as the number
of points and intervals satisfied during at least one time step, divided by the
total number of points and intervals defined for the block.

Proof Objective
The Proof Objective block receives Simulink Design Verifier coverage.
Simulink Design Verifier coverage is based on the points and intervals
defined in the block dialog box. Simulink Design Verifier coverage measures
the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of
points or intervals defined in the Proof Objective block.

If all points and intervals defined in the block are satisfied for at least
one time step, Simulink Design Verifier coverage is 100%. Otherwise, the
Simulink Verification and Validation software reports coverage as the number
of points and intervals satisfied during at least one time step, divided by the
total number of points and intervals defined for the block.

15-25

15 Model Objects That Receive Model Coverage

Rate Limiter
The Rate Limiter block receives decision coverage. The Simulink Verification
and Validation software reports decision coverage for the Rising slew rate
and Falling slew rate parameters.

For the Rising slew rate, decision coverage measures:

• The number of time steps that the block input changes more than or equal
to the rising rate, indicating a true decision.

• The number of time steps that the block input changes less than the rising
rate, indicating a false decision.

For the Falling slew rate, decision coverage measures:

• The number of time steps that the block input changes less than or equal to
the falling rate, indicating a true decision.

• The number of time steps that the block input changes more than the
falling rate, indicating a false decision.

The software does not measure Falling slew rate coverage for a time step
when the Rising slew rate is true. Therefore, the total number of Falling
slew rate decisions equals the number of time steps that the Rising slew
rate is false.

If at least one time step is true and at least one time step is false, decision
coverage for each of the two individual decisions for the block is 100%. If no
time steps are true, or if no time steps are false, decision coverage is 50%. The
software treats each element of a vector or matrix as a separate coverage
measurement.

Relay
The Relay block receives decision coverage. The Simulink Verification and
Validation software reports decision coverage for the Switch on point and
the Switch off point parameters.

For the Switch on point, decision coverage measures:

15-26

Model Objects That Receive Coverage

• The number of consecutive time steps that the block input is greater than
or equal to the Switch on point, indicating a true decision.

• The number of consecutive time steps that the block input is less than the
Switch on point, indicating a false decision.

For the Switch off point, decision coverage measures:

• The number of consecutive time steps that the block input is less than or
equal to the Switch off point, indicating a true decision.

• The number of consecutive time steps that the block input is greater than
the Switch off point, indicating a false decision.

The software does not measure Switch off point coverage for a time step
when the switch on threshold is true. Therefore, the total number of Switch
off point decisions equals the number of time steps that the Switch on
point is false.

If at least one time step is true and at least one time step is false, decision
coverage for each of the two individual decisions for the block is 100%. If no
time steps are true, or if no time steps are false, decision coverage is 50%. The
software treats each element of a vector or matrix as a separate coverage
measurement.

Saturation
The Saturation block receives decision coverage. The Simulink Verification
and Validation software reports decision coverage for the Lower limit and
Upper limit parameters.

For the Upper limit, decision coverage measures:

• The number of time steps that the block input is greater than or equal to
the upper limit, indicating a true decision.

• The number of time steps that the block input is less than the upper limit,
indicating a false decision.

For the Lower limit, decision coverage measures:

15-27

15 Model Objects That Receive Model Coverage

• The number of time steps that the block input is greater than the lower
limit, indicating a true decision.

• The number of time steps that the block input is less than or equal to the
lower limit, indicating a false decision.

The software does not measure Lower limit coverage for a time step when
the upper limit is true. Therefore, the total number of Lower limit decisions
equals the number of time steps that the Upper limit is false.

If at least one time step is true and at least one time step is false, decision
coverage for each of the two individual decisions for the Saturation block is
100%. If no time steps are true, or if no time steps are false, decision coverage
is 50%. The software treats each element of a vector or matrix as a separate
coverage measurement.

Saturation Dynamic
The Saturation Dynamic block receives decision coverage. If the Saturate on
integer overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Simulink Design Verifier Functions in MATLAB
Function Blocks
The following functions in MATLAB Function blocks receive Simulink Design
Verifier coverage:

• sldv.condition

• sldv.test

15-28

Model Objects That Receive Coverage

• sldv.assume

• sldv.prove

Each of these functions evaluates an expression expr, for example,
sldv.test(expr), where expr is any valid Boolean MATLAB expression.
Simulink Design Verifier coverage measures the number of time steps that
the expression expr evaluates to true.

If expr is true for at least one time step, Simulink Design Verifier coverage for
that function is 100%. Otherwise, the Simulink Verification and Validation
software reports coverage for that function as 0%.

Sqrt, Signed Sqrt, Reciprocal Sqrt
The Sqrt, Signed Sqrt, Reciprocal Sqrt blocks receive decision coverage. If the
Saturate on integer overflow parameter is selected, the decision coverage
measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Sum, Add, Subtract, Sum of Elements
The Sum, Add, Subtract, Sum of Elements blocks receive decision coverage.
If the Saturate on integer overflow parameter is selected, the decision
coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

15-29

15 Model Objects That Receive Model Coverage

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Switch
The Switch block receives decision coverage. Decision coverage is based on:

• Control input to block

• Selection of the Saturate on integer overflow parameter

For the control input to the block, decision coverage measures:

• The number of time steps that the control input evaluates to true.

• The number of time steps the control input evaluates to false.

The number of decision points is based on whether the control input is scalar
or vector.

If the Saturate on integer overflow parameter is selected, the decision
coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for each of the individual decisions for the Switch block is 100%. If
no time steps are true, or if no time steps are false, decision coverage is 50%.
The software treats each element of a vector or matrix as a separate coverage
measurement.

SwitchCase, SwitchCase Action Subsystem
The SwitchCase block and SwitchCase Action Subsystem receive decision
coverage. The Simulink Verification and Validation software measures

15-30

Model Objects That Receive Coverage

decision coverage individually for each switch case defined in the block and
also for the default case. The number of decision outcomes is equal to the
number of case conditions plus one for the default case, if one is defined.

The software reports the total number of time steps that each case evaluates
to true. If each case, including the default case, evaluates to true at least once,
decision coverage is 100%. The software determines the decision coverage
by the number of cases that evaluate true for at least one time step divided
by the total number of cases.

If the SwitchCase block does not contain a default case, the software
measures decision coverage for the number of time steps in which none of the
cases evaluated to true. In the coverage report, this coverage is reported
as implicit-default.

Test Condition
The Test Condition block receives Simulink Design Verifier coverage.
Simulink Design Verifier coverage is based on the points and intervals
defined in the block dialog box. Simulink Design Verifier coverage measures
the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of
points or intervals defined in the Test Condition block.

If all points and intervals defined in the block are satisfied for at least
one time step, Simulink Design Verifier coverage is 100%. Otherwise, the
Simulink Verification and Validation software reports coverage as the number
of points and intervals satisfied during at least one time step, divided by the
total number of points and intervals defined for the block.

Test Objective
The Test Objective block receives Simulink Design Verifier coverage.
Simulink Design Verifier coverage is based on the points and intervals
defined in the block dialog box. Simulink Design Verifier coverage measures
the number of time steps that each point or interval defined in the block is
satisfied. The total number of objective outcomes is based on the number of
points or intervals defined in the Test Objective block.

15-31

15 Model Objects That Receive Model Coverage

If all points and intervals defined in the block are satisfied for at least
one time step, Simulink Design Verifier coverage is 100%. Otherwise, the
Simulink Verification and Validation software reports coverage as the number
of points and intervals satisfied during at least one time step, divided by the
total number of points and intervals defined for the block.

Triggered Models
A Model block can reference a model that contains edge-based trigger ports
at the root level of the model. Triggered models receive decision, condition,
and MCDC coverage.

Decision coverage measures:

• The number of time steps that the referenced model is triggered, indicating
a true decision.

• The number of time steps that the referenced model is not triggered,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the Model block that references the triggered model is 100%. If
no time steps are true, or if no time steps are false, decision coverage is 50%.

Only if the trigger input is a vector, the Simulink Verification and Validation
software measures condition coverage for the trigger port in the referenced
model. For the trigger port, condition coverage measures:

• The number of time steps that each element of the trigger port is true.

• The number of time steps that each element of the trigger port is false.

The software reports condition coverage based on the total number of possible
conditions and how many are true for at least one time step and how many
are false for at least one time step.

If the trigger port is a vector, the software measures MCDC coverage for the
trigger port only. Because the trigger port of the referenced model is an OR of
the vector inputs, if, during at least one time step, each vector trigger port is
exclusively true and if, during at least one time step, all vector trigger port

15-32

Model Objects That Receive Coverage

inputs are false, MCDC coverage is 100%. The software treats each element
of the vector as a separate condition for MCDC coverage measurement.

Triggered Subsystem
The Triggered Subsystem block receives decision, condition, and MCDC
coverage.

Decision coverage measures:

• The number of time steps that the block is triggered, indicating a true
decision.

• The number of time steps that the block is not triggered, indicating a false
decision.

If at least one time step is true and at least one time step is false, decision
coverage is 100%. If no time steps are true, or if no time steps are false,
decision coverage is 50%.

The Simulink Verification and Validation software measures condition
coverage for the trigger input only if the trigger input is a vector. For the
trigger input, condition coverage measures:

• The number of time steps that each element of the trigger edge is true.

• The number of time steps that each element of the trigger edge is false.

The software reports condition coverage based on the total number of possible
conditions and how many are true for at least one time step and how many
are false for at least one time step.

If the trigger input is a vector, the software measures MCDC coverage for the
trigger input only. Because the trigger edge of the subsystem is an OR of the
vector inputs, if, during at least one time step, each vector trigger edge input
is exclusively true and if, during at least one time step, all vector trigger edge
inputs are false, MCDC coverage is 100%. The software treats each element
of the vector as a separate condition for MCDC coverage measurement.

15-33

15 Model Objects That Receive Model Coverage

Truth Table
The Truth Table block is a Stateflow block that enables you to use truth table
logic directly in a Simulink model. The Truth Table block receives condition,
decision, and MCDC coverage. For more information on model coverage with
Stateflow truth tables, see “Model Coverage for Stateflow Truth Tables” on
page 17-63.

Unary Minus
The Unary block receives decision coverage. If the Saturate on integer
overflow parameter is selected, the decision coverage measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

Weighted Sample Time Math
The Weighted Sample Time Math block receives decision coverage. If the
Saturate on integer overflow parameter is selected, the decision coverage
measures:

• The number of times the block saturates on integer overflow, indicating
a true decision.

• The number of times the block does not saturate on integer overflow,
indicating a false decision.

If at least one time step is true and at least one time step is false, decision
coverage for the block is 100%. If no time steps are true, or if no time steps
are false, decision coverage is 50%. The software treats each element of a
vector or matrix as a separate coverage measurement.

15-34

Model Objects That Receive Coverage

While Iterator, While Iterator Subsystem
The While Iterator block and While Iterator Subsystem receive decision
coverage. Decision coverage is measured for the while condition value, which
is determined by the while condition being satisfied (true), or the while
condition not being satisfied (false). Simulink Verification and Validation
software reports the total number of times that each while condition
evaluates to true and to false. If the while condition evaluates to true at
least once, and false at least once, decision coverage for the while condition
is 100%. If no while conditions are true, or if no while conditions are false,
decision coverage is 50%.

If the iteration limit is exceeded (true) or is not exceeded (false), the software
measures decision coverage independently. If the iteration limit evaluates to
true at least once, and false at least once, decision coverage for the iteration
limit is 100%. If no iteration limits are true, or if no iteration limits are false,
decision coverage is 50%. If you setMaximum number of iterations to -1
(no limit), the decision coverage for the iteration limit is true for all iterations
and false for zero iterations, and decision coverage is 50%.

15-35

15 Model Objects That Receive Model Coverage

Model Objects That Do Not Receive Coverage
The Simulink Verification and Validation software does not record coverage
for blocks that are not listed in “Model Objects That Receive Coverage” on
page 15-2.

The following table identifies specific model objects that do not receive
coverage in certain conditions.

Model object Does not receive coverage...

Model blocks When the Simulation mode
parameter specifies Accelerator.

Coverage for Model blocks is the sum
of the coverage data for the contents
of the referenced model.

Subsystem block When theRead/Write Permissions
parameter is set to NoReadOrWrite.

15-36

16

Setting Model Coverage
Options

16 Setting Model Coverage Options

Specify Model Coverage Options
Before starting a model coverage analysis, you must specify several model
coverage recording and reporting options. In the Simulink Editor, select
Analysis > Coverage > Settings. The Coverage Settings dialog box opens,
with the Coverage tab displayed.

The following sections describe the settings for each tab in the Coverage
Settings dialog box.

In this section...

“Coverage Tab” on page 16-2

“Results Tab” on page 16-6

“Reporting Tab” on page 16-8

“Options Tab” on page 16-13

“Filter Tab” on page 16-16

Coverage Tab
On the Coverage tab, select the model coverages calculated during
simulation.

16-2

Specify Model Coverage Options

Coverage for this model
Instructs the software to gather and report the model coverages that you
specify during simulation. When you select the Coverage for this model
option, the Select Subsystem button and the Coverage metrics section of
the Coverage pane become available.

16-3

16 Setting Model Coverage Options

Select Subsystem
Specifies the subsystem for which the software gathers and reports coverage
data. When you select the Coverage for this model option, the software, by
default, generates coverage data for the entire model.

To restrict coverage reporting to a particular subsystem:

1 On the Coverage tab, click Select Subsystem.

The Subsystem Selection dialog box opens.

2 In the Subsystem Selection dialog box, select the subsystem for which you
want to enable coverage reporting and click OK.

Coverage for referenced models
Causes the software to record and report the model coverages that you specify
for referenced models during simulation. When you select the Coverage for
referenced models option, the Select Models button and the Coverage
metrics section of the Coverage tab become available.

16-4

Specify Model Coverage Options

Select Models
Click to specify the referenced models for which the Simulink Verification
and Validation software records and reports coverage data. When you select
Coverage for referenced models, the software, by default, generates
coverage data for all referenced models where the simulation mode of the
Model block is set to Normal.

To enable coverage reporting for particular referenced models:

1 On the Coverage pane, click Select Models.

2 In the Select Models for Coverage Analysis dialog box, select the referenced
models for which you want to record coverage.

The icon next to the model name indicates the simulation mode for that
referenced model. You can select only referenced models whose simulation
mode is set to Normal.

16-5

16 Setting Model Coverage Options

If you have multiple Model blocks that reference the same model and whose
simulation mode is set to Normal, selecting or clearing one check box for
that model causes the check boxes for all Normal mode instances of that
model to be selected or cleared.

3 Click OK to close the Select Models for Coverage Analysis dialog box and
return to the Coverage Settings dialog box.

Coverage for MATLAB files
Enables coverage for any external functions called by MATLAB functions in
your model. The MATLAB functions may be defined in a MATLAB Function
block or in a Stateflow chart.

You must select either Coverage for this model or Coverage for
referenced models to select the Coverage for MATLAB files option.

Coverage metrics
Select the types of test case coverage analysis that you want the tool to
perform (see “Types of Model Coverage” on page 14-3). The Simulink
Verification and Validation software gathers and reports those types of
coverage for the subsystems, models, and referenced models you specify.

Results Tab
On the Results tab, select the destination for model coverage results.

16-6

Specify Model Coverage Options

Save cumulative results in workspace variable
Causes model coverage to accumulate and save the results of successive
simulations in a workspace variable. You specify the workspace variable in
the cvdata object name field.

16-7

16 Setting Model Coverage Options

Save last run in workspace variable
Causes model coverage to save the results of the last simulation run in a
workspace variable. You specify that workspace variable in the cvdata
object name field below.

Increment variable name with each simulation
Causes the Simulink Verification and Validation software to increment the
name of the coverage data object variable that saves the coverage data from
last run with each simulation, so that the current simulation run does not
overwrite the results of the previous run.

Update results on pause
Causes the model coverage results to be recorded up to the point at which
you pause the simulation for the first time. When you resume simulation
and later pause or stop, the model coverage report reappears, with coverage
results up to the current pause or stop time.

Display coverage results using model coloring
Causes coloring of Simulink blocks according to their level of model coverage,
after simulation. Blocks highlighted in light green received full coverage
during testing. Blocks highlighted in light red received incomplete coverage.
See “View Coverage Results in a Model” on page 17-5.

Reporting Tab
On the Reporting tab, specify whether the model coverage tool generates an
HTML report and what data the report includes.

16-8

Specify Model Coverage Options

Generate HTML report
Causes the Simulink Verification and Validation software to create an HTML
report containing the coverage data. Click the HTML Settings button to
select various reporting options.

16-9

16 Setting Model Coverage Options

Settings
On the Reporting tab, click HTML Settings to open the HTML Settings
dialog box. In the HTML Settings dialog box, choose model coverage report
options.

Option Description

Show report Specifies whether to open the HTML
report in aMATLAB browser window
at the end of model simulation.

Include each test in the model
summary

At the top of the HTML report,
the model hierarchy table includes
columns listing the coverage metrics
for each test. If you do not select this
option, the model summary reports
only the total coverage.

16-10

Specify Model Coverage Options

Option Description

Produce bar graphs in the model
summary

Causes the model summary to
include a bar graph for each coverage
result for a visual representation of
the coverage.

Use two color bar graphs (red,
blue)

Red and blue bar graphs are
displayed in the report instead of
black and white bar graphs.

Display hit/count ratio in the
model summary

Reports coverage numbers as both a
percentage and a ratio, for example,
67% (8/12).

Do not report fully covered
model objects

The coverage report includes only
model objects that the simulation
does not cover fully, useful when
developing tests, because it reduces
the size of the generated reports.

Include cyclomatic complexity
numbers in summary

Includes the cyclomatic complexity
(see “Types of Model Coverage”
on page 14-3) of the model and its
top-level subsystems and charts in
the report summary. A cyclomatic
complexity number shown in
boldface indicates that the analysis
considered the subsystem itself
to be an object when computing
its complexity. This occurs for
atomic and conditionally executed
subsystems, as well as for Stateflow
Chart blocks.

Include cyclomatic complexity
numbers in block details

Includes the cyclomatic complexity
metric in the block details section of
the report.

Filter Stateflow events from
report

Excludes coverage data on Stateflow
events.

16-11

16 Setting Model Coverage Options

Cumulative Runs
Displays the coverage results from successive simulations in the report.
For more information, see “Save cumulative results in workspace variable”
on page 16-7.

On the Results tab, if you select the Save cumulative results in
workspace variable check box, a coverage running total is updated with
new results at the end of each simulation. However, if you change model or
block settings between simulations that are incompatible with settings from
previous simulations and affect the type or number of coverage points, the
cumulative coverage resets.

You can make cumulative coverage results persist between MATLAB
sessions. The cvload parameter RESTORETOTAL must be 1 in order to restore
cumulative results. At the end of the sessions, use cvsave to save results to a
file. At the beginning of the session, cvload to load the results.

When you save the coverage results to a file using cvsave and a model name
argument, the file also contains the cumulative running total. When you load
that file into the coverage tool using cvload, you can select whether you want
to restore the running total from the file.

When you restore a running total from saved data, the saved results are
reflected in the next cumulative report. If a running total already exists when
you restore a saved value, the existing value is overwritten.

Whenever you report on more than one single simulation, the coverage
displayed for truth tables and lookup-table maps is based on the total coverage
of all the reported runs. For cumulative reports, this information includes all
the simulations where cumulative results are stored.

You can also calculate cumulative coverage results at the command line,
through the + operator:

covdata1 = cvsim(test1);
covdata2 = cvsim(test2);
cvhtml('cumulative_report', covdata + covdata2);

16-12

Specify Model Coverage Options

Last run
Include in the report only the results of the most recent simulation run.

Additional data to include in report
Specify names of coverage data from previous runs to include in the current
report along with the current coverage data. Each entry creates a new set of
columns in the report.

Options Tab
On the Options tab, select options for model coverage reports.

16-13

16 Setting Model Coverage Options

Treat Simulink logic blocks as short-circuited
The Treat Simulink logic blocks as short-circuited option applies only
to condition and MCDC coverage. If you select this option, coverage analysis
treats Simulink logic blocks as if the block ignores remaining inputs when
the previous inputs alone determine the block’s output. For example, if the
first input to a Logical Operator block whose Operator parameter specifies
AND is false, MCDC coverage analysis ignores the values of the other inputs
when determining MCDC coverage for a test case.

16-14

Specify Model Coverage Options

If you enable this feature and logic blocks are short-circuited while collecting
model coverage, you may not be able to achieve 100% coverage for that block.

To generate code from a model, select this option. Also select this option for
where you want the MCDC coverage analysis to approximate the degree of
coverage that your test cases achieve for the generated code (most high-level
languages short-circuit logic expressions).

Note A test case that does not achieve full MCDC coverage for
non-short-circuited logic expressions might achieve full coverage for
short-circuited expressions.

Warn when unsupported blocks exist in model
Select this option to warn you at the end of the simulation that the model
contains blocks that require coverage analysis but are not currently covered
by the tool.

Force block reduction off
To achieve faster execution during model simulation and in generated code, in
the Configuration Parameters dialog box, on the Optimization pane, enable
the Block reduction parameter. The Simulink software collapses certain
groups of blocks into a single, more efficient block, or removes them entirely.

One of the model coverage options, Force block reduction off, allows you to
ignore the Block reduction parameter when collecting model coverage.

If you do not enable the Block reduction parameter, or if you select Force
block reduction off, the Simulink Verification and Validation software
provides coverage data for every block in the model that collects coverage.

If you enable the Block reduction parameter and do not set Force block
reduction off, the coverage report lists the reduced blocks that would have
collected coverage.

The model coverage report identifies any reduced blocks. For an example of a
reduced blocks report, see “Block Reduction” on page 18-35.

16-15

16 Setting Model Coverage Options

Filter Tab
On the Filter tab, enter the file name that specifies the model objects to be
excluded from model coverage collection. You can use the same filter file
for multiple models.

16-16

Specify Model Coverage Options

Filename
If you enable coverage for this model, you can create a filter file or open an
existing filter file. In this filter file, you can then specify objects that you want
to exclude from model coverage collection during simulation.

In the Filename field, enter the full path to the file that specifies the model
objects to be excluded from model coverage collection. You can also click
Browse to navigate to the file. You can only open files that have the valid
.cvf filter file format.

If the current model has a filter file already associated with it, the file name
appears in the Filename field, and the Open in Filter Viewer link is
displayed. To edit the coverage filter settings, click this link.

If the Open in Filter Viewer link is unavailable, go to the Coverage tab.
Select Coverage for this model to enable coverage for the current model.
You can then enter the filter file name and edit the file.

For more information on coverage filtering, see “Coverage Filter Rules and
Files” on page 19-3 and the example “Filter Model Objects to Refine Coverage
Results” on page 19-12.

16-17

16 Setting Model Coverage Options

16-18

17

Coverage Collection During
Simulation

• “Model Coverage Collection Workflow” on page 17-2

• “Create and Run Test Cases” on page 17-3

• “View Coverage Results in a Model” on page 17-5

• “Model Coverage for Multiple Instances of a Referenced Model” on page
17-11

• “Model Coverage for MATLAB Functions” on page 17-22

• “Model Coverage for Stateflow Charts” on page 17-40

17 Coverage Collection During Simulation

Model Coverage Collection Workflow
To develop effective tests with model coverage:

1 Develop one or more test cases for your model. (See “Create and Run Test
Cases” on page 17-3.)

2 Run the test cases to verify model behavior.

3 Analyze the coverage reports produced by the Simulink Verification and
Validation software.

4 Using the information in the coverage reports, modify the test cases to
increase their coverage or add new test cases to cover areas not currently
covered.

5 Repeat the preceding steps until you are satisfied with the coverage of
your test suite.

Note The Simulink Verification and Validation software comes with an
example of model coverage to validate model tests. To step through the
example, at the MATLAB command prompt, enter simcovdemo.

17-2

Create and Run Test Cases

Create and Run Test Cases
To create and run test cases, model coverage provides two MATLAB
commands, cvtest and cvsim. The cvtest command creates test cases that
the cvsim command runs. (See “Run Tests with cvsim” on page 20-6.)

You can also run the coverage tool interactively:

1 Open the sldemo_fuelsys model.

2 In the Simulink model window, select Analysis > Coverage > Settings.

The Coverage Settings dialog box appears, with the Coverage tab open.

3 Select Coverage for this model: sldemo_fuelsys, which enables:

• The Select Subsystem button

• The metrics options in the Coverage metrics section

• Fields on the Results, Reporting, and Options tabs of the Coverage
Settings dialog box

4 Under Coverage metrics, select the types of coverage that you want to
record in the coverage report.

5 Click OK.

6 In the Simulink Editor, select Simulation > Run to start simulating the
model.

If you specify to report model coverage, the Simulink Verification
and Validation software saves coverage data for the current run
in the workspace object covdata and cumulative coverage data in
covCumulativeData, by default. At the end of the simulation, this data
appears in an HTML report that opens in a browser window.

17-3

17 Coverage Collection During Simulation

Note You cannot run simulations if you select both model
coverage reporting and acceleration options. If you select
Simulation > Mode > Accelerator in the Simulink Editor, Simulink
does not record coverage.

You cannot select both block reduction and conditional branch input
optimization when you perform coverage analysis because they interfere
with coverage recording.

17-4

View Coverage Results in a Model

View Coverage Results in a Model

In this section...

“Overview of Model Coverage Highlighting” on page 17-5

“Enable Coverage Highlighting” on page 17-6

“Model Coverage Coloring” on page 17-6

“Coverage Display Window” on page 17-10

Overview of Model Coverage Highlighting
When you simulate a Simulink model, you can configure your model to
provide visual results that allow you to see at a glance which objects recorded
100% coverage. After the simulation:

• In the model window, model objects are highlighted in certain colors
according to what coverage was recorded:

- Light green indicates that an object received full coverage during testing.

- Light red indicates that an object received incomplete coverage.

- Gray indicates that an object was filtered from coverage.

- Objects with no color highlighting received no coverage.

• When you click a colored object, the Coverage Display Window provides
details about the coverage recorded for that block. For subsystems and
Stateflow charts, the Coverage Display Window lists the summary coverage
for all objects in that subsystem or chart. For other blocks, the Coverage
Display Window lists specific details about the objects that did not receive
100% coverage.

The simulation highlights blocks that received the following types of model
coverage:

• “Decision Coverage (DC)” on page 14-4

• “Condition Coverage (CC)” on page 14-4

• “Modified Condition/Decision Coverage (MCDC)” on page 14-4

17-5

17 Coverage Collection During Simulation

• “Simulink® Design Verifier™ Coverage” on page 14-8

Enable Coverage Highlighting
To enable the model coverage colored diagram display:

1 In the Simulink Editor, select Analysis > Coverage > Settings to open
the Coverage Settings dialog box.

2 In the Coverage tab, select Coverage for this model. Click Select
Subsystem to open the Subsystem Selection dialog box. Select the
top-level model sldemo_fuelsys so that all subsystems are included in
coverage analysis. Close the Subsystem Selection dialog box.

3 In the Coverage Settings dialog box, under the Coverage metrics pane,
select Decision, Condition,MCDC, and Simulink Design Verifier.

4 Select the Results tab.

5 Select Display coverage results using model coloring. This is the
default setting.

After you have enabled the coverage coloring, simulate your model. In the
model, you can see at a glance which objects received full, partial, or no
coverage.

Model Coverage Coloring
The following sections show examples of highlighted model objects in colors
that correspond to the recorded coverage.

Green: Full Coverage
In this example, the Switch block received 100% coverage, as indicated by the
green highlighting and the information in the Coverage Display Window.

17-6

View Coverage Results in a Model

Red: Partial Coverage
In this example, the control_logic Stateflow chart received the following
coverage:

• Decision: 25%

• Condition: 21%

• MCDC: 0%

17-7

17 Coverage Collection During Simulation

Inside the control_logic subsystem, the Pressure substate was never fail.

In the next example, in the Multiport Switch block, two of the data ports
were never executed.

17-8

View Coverage Results in a Model

Gray: Filtered Coverage
In this example, the fuel_rate_control subsystem is highlighted in gray
because it was filtered out of coverage recording.

17-9

17 Coverage Collection During Simulation

Coverage Display Window
After simulating the model and recording coverage, by default, the Coverage
Display Window is the top-most visible window. When you click an object
that recorded coverage, the Coverage Display Window displays details of the
coverage recorded during simulation.

In the Coverage Display Window, you can:

• Configure the window so it is not always the top-most visible window. Next
to Always on top, click and removing the check.

• Configure the window to display coverage information when you click an
object that recorded coverage. Click and select Click.

• Configure the window to display coverage information when you hover your
cursor on an object that recorded coverage. Click and select Focus.

• Close the window. Press Alt+F4.

• Close the window and remove highlighting on the model. Select
Display > Remove Highlighting.

17-10

Model Coverage for Multiple Instances of a Referenced Model

Model Coverage for Multiple Instances of a Referenced
Model

In this section...

“About Coverage for Model Blocks” on page 17-11

“Record Coverage for Multiple Instances of a Referenced Model” on page
17-11

About Coverage for Model Blocks
Model blocks do not receive coverage directly; if you set the simulation mode
of the Model block to Normal, the Simulink Verification and Validation
software records coverage for the model referenced from the Model block. If
the simulation mode for the Model block is anything other than Normal, the
software does not record coverage for the referenced model.

Your Simulink model can contain multiple Model blocks with Normal
simulation mode that reference the same model. When the software records
coverage, each instance of the referenced model can be exercised with
different inputs or parameters, possibly resulting in additional coverage for
the referenced model.

The Simulink Verification and Validation software records coverage for all
instances of the referenced model with Normal simulation mode and combines
the coverage data for that referenced model in the final results.

Record Coverage for Multiple Instances of a
Referenced Model
To see how this works, simulate a model twice. The first time, you record
coverage for one Model block in Normal simulation mode. The second time,
you record coverage for two Model blocks in Normal simulation mode. Both
Model blocks reference the same model.

• “Record Coverage for the First Instance of the Referenced Model” on page
17-12

17-11

17 Coverage Collection During Simulation

• “Record Coverage for the Second Instance of the Referenced Model” on
page 17-17

Record Coverage for the First Instance of the Referenced Model
Record coverage for one Model block.

1 Open your top-level model. This example uses the following model:

This model contains three Model blocks that reference the
sldemo_mdlref_counter_datamngt example model. The corners of each
Model block indicate the value of their Simulation mode parameter:

• Counter1 — Simulation mode: Normal

• Counter2 — Simulation mode: Accelerator

• Counter3 — Simulation mode: Accelerator

2 Configure your model to record coverage during simulation:

a In the model window, select Analysis > Coverage > Settings.

b On the Coverage tab, select:

17-12

Model Coverage for Multiple Instances of a Referenced Model

• Coverage for this model

• Coverage for referenced models

c Under Coverage for referenced models, click Select Models.
In the Select Models for Coverage Analysis dialog box, you can
select only those referenced models whose simulation mode is
Normal. In this example, only the first Model block that references
sldemo_mdlref_counter_datamngt is available for recording coverage.

d On the Reporting tab, select Last Run so that you can compare
coverage data from individual simulations, not accumulated coverage
for successive simulations.

e Click OK to exit the Select Models for Coverage Analysis dialog box.

3 Click OK to save your coverage settings and exit the Coverage Settings
dialog box.

4 Simulate your model.

When the simulation is complete, the HTML coverage report
opens. In this example, the coverage data for the referenced model,
sldemo_mdlref_counter_datamngt, shows that the model achieved 69%
coverage.

5 Click the hyperlink in the report for the referenced model.

The detailed coverage report for the referenced model opens, and the
referenced model appears with highlighting to show coverage results.

17-13

17 Coverage Collection During Simulation

Note the following about the coverage for the Range Check subsystem in
this example:

• The Saturate Count block executed 100 times. This block has four
Boolean decisions. Decision coverage was 50%, because two of the four
decisions were never recorded:

– The decision input > lower limit was never false.

– The decision input >= upper limit was never true.

17-14

Model Coverage for Multiple Instances of a Referenced Model

• The DetectOverflow function executed 50 times. This script has five
decisions. The DetectOverflow script achieved 60% coverage because
two of the five decisions were never recorded:

– The expression count >= CounterParams.UpperLimit was never
true.

– The expression count > CounterParams.LowerLimit was never
false.

17-15

17 Coverage Collection During Simulation

17-16

Model Coverage for Multiple Instances of a Referenced Model

Record Coverage for the Second Instance of the Referenced
Model
Record coverage for two Model blocks. Set the simulation mode of a second
Model block to Normal and simulate the model. In this example, the Counter2
block adds to the coverage for the model referenced from both Model blocks.

1 In the Simulink Editor for your top-level model, right-click a second Model
block and select Block Parameters (ModelReference).

The Function Block Parameters dialog box opens.

2 Set the Simulation mode parameter to Normal.

3 Click OK to save your change and exit the Function Block Parameters
dialog box.

The corners of the Model block change to indicate that the simulation mode
for this block is Normal, as in the example below.

17-17

17 Coverage Collection During Simulation

4 To make sure that the software records coverage for both instances of
this model:

a Select Analysis > Coverage > Settings.

b On the Coverage pane, under Coverage for referenced models,
click Select Models.

In the Select Models for Coverage Analysis dialog box, verify that both
instances of the referenced model are selected. In this example, the
list now looks like the following.

17-18

Model Coverage for Multiple Instances of a Referenced Model

If you have multiple instances of a referenced model in Normal mode,
you can choose to record coverage for all of them or none of them.

c Click OK to close the Select Models for Coverage Analysis dialog box.

5 Simulate your model again.

6 When the simulation is complete, open the HTML coverage report.

In this example, the referenced model achieved 85% coverage. Note the
following about the coverage data for the Range Check subsystem:

• The Saturate Count block executed 179 times. The simulation of the
Counter2 block executed the Saturate Count block an additional 79
times, for a total of 179 executions.

The decision input >= upper limit was true 21 times during this
simulation, compared to 0 during the first simulation. The fourth
decision input > lower limit was still never false. Three out of four
decisions were recorded during simulation, so this block achieved 75%
coverage.

17-19

17 Coverage Collection During Simulation

• The DetectOverflow function executed 100 times. The simulation of the
Counter2 block executed the DetectOverflow function an additional
50 times.

The DetectOverflow function has five decisions. The expression
count >= CounterParams.UpperLimit was true 21 times during this
simulation, compared to 0 during the first simulation. The expression
count > CounterParams.LowerLimit was never false. Four out of
five decisions were recorded during simulation, so the DetectOverflow
function achieved 80% coverage.

17-20

Model Coverage for Multiple Instances of a Referenced Model

17-21

17 Coverage Collection During Simulation

Model Coverage for MATLAB Functions

In this section...

“About Model Coverage for MATLAB Functions” on page 17-22

“Types of Model Coverage for MATLAB Functions” on page 17-22

“How to Collect Coverage for MATLAB Functions” on page 17-24

“Examples: Model Coverage for MATLAB Functions” on page 17-25

About Model Coverage for MATLAB Functions
The Simulink Verification and Validation software simulates a Simulink
model and reports model coverage data for the decisions and conditions of
code in MATLAB Function blocks. Model coverage only supports coverage for
MATLAB functions configured for code generation.

For example, consider the following if statement:

if (x > 0 || y > 0)
reset = 1;

The if statement contains a decision with two conditions (x > 0 and y > 0).
The Simulink Verification and Validation software verifies that all decisions
and conditions are taken during the simulation of the model.

Types of Model Coverage for MATLAB Functions
The types of model coverage that the Simulink Verification and Validation
software records for MATLAB functions configured for code generation are:

• “Decision Coverage” on page 17-22

• “Condition and MCDC Coverage” on page 17-23

• “Simulink® Design Verifier™ Coverage” on page 17-23

Decision Coverage
During simulation, the following MATLAB Function block statements are
tested for decision coverage:

17-22

Model Coverage for MATLAB® Functions

• Function header — Decision coverage is 100% if the function or local
function is executed.

• if — Decision coverage is 100% if the if expression evaluates to true at
least once, and false at least once.

• switch — Decision coverage is 100% if every switch case is taken,
including the fall-through case.

• for— Decision coverage is 100% if the equivalent loop condition evaluates
to true at least once, and false at least once.

• while — Decision coverage is 100% if the equivalent loop condition
evaluates to true at least once, and evaluates to false at least once.

Condition and MCDC Coverage
During simulation, in the MATLAB Function block function, the following
logical conditions are tested for condition and MCDC coverage:

• if statement conditions

• while statement conditions

Simulink Design Verifier Coverage
The following MATLAB functions are active in code generation and in
Simulink Design Verifier:

• sldv.condition

• sldv.test

• sldv.assume

• sldv.prove

When you specify the Simulink Design Verifier coverage metric in the
Coverage Settings dialog box, the Simulink Verification and Validation
software records coverage for these functions.

Each of these functions evaluates an expression expr, for example,
sldv.test(expr), where expr is a valid Boolean MATLAB expression.

17-23

17 Coverage Collection During Simulation

Simulink Design Verifier coverage measures the number of time steps that
the expression expr evaluates to true.

If expr is true for at least one time step, Simulink Design Verifier coverage
for that function is 100%. Otherwise, the Simulink Verification and Validation
software reports coverage for that function as 0%.

For an example of coverage data for Simulink Design Verifier functions in a
coverage report, see “Simulink® Design Verifier™ Coverage” on page 18-40.

How to Collect Coverage for MATLAB Functions
When you simulate your model, the Simulink Verification and
Validation software can collect coverage data for MATLAB functions
configured for code generation. To enable model coverage, select
Analysis > Coverage > Settings and select Coverage for this model.

You collect model coverage for MATLAB functions as follows:

• Functions in a MATLAB Function block

• Functions in an external MATLAB file

To collect coverage for an external MATLAB file, on the Coverage tab
of the Coverage Settings dialog box, select Coverage for External
MATLAB files.

• Simulink Design Verifier functions:

- sldv.condition

- sldv.test

- sldv.assume

- sldv.prove

To collect coverage for these functions, on the Coverage tab of the Coverage
Settings dialog box, select the Simulink Design Verifier coverage metric.

The following section provides model coverage examples for each of these
situations.

17-24

Model Coverage for MATLAB® Functions

Examples: Model Coverage for MATLAB Functions

• “Model Coverage for MATLAB Function Blocks” on page 17-25

• “Model Coverage for MATLAB Functions in an External File” on page 17-36

• “Model Coverage for Simulink® Design Verifier™ MATLAB Functions” on
page 17-37

Model Coverage for MATLAB Function Blocks
Simulink Verification and Validation software measures model coverage for
functions in a MATLAB Function block.

The following model contains two MATLAB functions in its MATLAB
Function block:

In the Configuration Parameters dialog box, on the Solver pane, under
Solver options, the simulation parameters are set as follows:

• Type — Fixed-step

• Solver — discrete (no continuous states)

• Fixed-step size (fundamental sample time)— 1

The MATLAB Function block contains two functions:

• The top-level function, run_intersect_test, sends the coordinates
for two rectangles, one fixed and the other moving, as arguments to
rect_intersect.

• The local function, rect_intersect, tests for intersection between the
two rectangles. The origin of the moving rectangle increases by 1 in the x
and y directions with each time step.

17-25

17 Coverage Collection During Simulation

The coordinates for the origin of the moving test rectangle are represented
by persistent data x1 and y1, which are both initialized to -1. For the first
sample, x1 and y1 both increase to 0. From then on, the progression of
rectangle arguments during simulation is as shown in the following graphic.

��������	
������"
�

/���
������"
��

The fixed rectangle is shown in bold with a lower-left origin of (2,4) and a
width and height of 2. At time t = 0, the first test rectangle has an origin of
(0,0) and a width and height of 2. For each succeeding sample, the origin
of the test rectangle increments by (1,1). The rectangles at sample times
t = 2, 3, and 4 intersect with the test rectangle.

17-26

Model Coverage for MATLAB® Functions

The local function rect_intersect checks to see if its two rectangle
arguments intersect. Each argument consists of coordinates for the lower-left
corner of the rectangle (origin), and its width and height. x values for the left
and right sides and y values for the top and bottom are calculated for each
rectangle and compared in nested if-else decisions. The function returns a
logical value of 1 if the rectangles intersect and 0 if they do not.

Scope output during simulation, which plots the return value against the
sample time, confirms the intersecting rectangles for sample times 2, 3, and 4 .

After the simulation, the model coverage report appears in a browser window.
After the summary in the report, the Details section of the model coverage
report reports on each parts of the model.

The model coverage report for the MATLAB Function block shows that the
block itself has no decisions of its own apart from its function.

The following sections examine the model coverage report for the example
model in reverse function-block-model order. Reversing the order helps you
make sense of the summary information at the top of each section.

17-27

17 Coverage Collection During Simulation

Coverage for the MATLAB Function run_intersect_test. Model coverage
for the MATLAB Function block function run_intersect_test appears
under the linked name of the function. Clicking this link opens the function
in the editor.

Below the linked function name is a link to the model coverage report
for the parent MATLAB Function block that contains the code for
run_intersect_test.

The top half of the report for the function summarizes its model coverage
results. The coverage metrics for run_intersect_test include decision,
condition, and MCDC coverage. You can best understand these metrics by
examining the code for run_intersect_test.

17-28

Model Coverage for MATLAB® Functions

Lines with coverage elements are marked by a highlighted line number
in the listing:

• Line 1 receives decision coverage on whether the top-level function
run_intersect_test is executed.

• Line 6 receives decision coverage for its if statement.

17-29

17 Coverage Collection During Simulation

• Line 14 receives decision coverage on whether the local function
rect_intersect is executed.

• Lines 27 and 30 receive decision, condition, and MCDC coverage for their
if statements and conditions.

Each of these lines is the subject of a report that follows the listing.

The condition right1 < left2 in line 30 is highlighted in red. This means
that this condition was not tested for all of its possible outcomes during
simulation. Exactly which of the outcomes was not tested is in the report
for the decision in line 30.

The following sections display the coverage for each run_intersect_test
decision line. The coverage for each line is titled with the line itself, which
if clicked, opens the editor to the designated line.

Coverage for Line 1. The coverage metrics for line 1 are part of the
coverage data for the function run_intersect_test.

The first line of every MATLAB function configured for code generation
receives coverage analysis indicative of the decision to run the function
in response to a call. Coverage for run_intersect_test indicates that it
executed at least once during simulation.

Coverage for Line 6. The Decisions analyzed table indicates that
the decision in line 6, if isempty(x1), executed a total of eight times.
The first time it executed, the decision evaluated to true, enabling
run_intersect_test to initialize the values of its persistent data. The
remaining seven times the decision executed, it evaluated to false. Because
both possible outcomes occurred, decision coverage is 100%.

17-30

Model Coverage for MATLAB® Functions

Coverage for Line 14. The Decisions Analyzed table indicates that
the local function rect_intersect executed during testing, thus receiving
100% coverage.

Coverage for Line 27. The Decisions analyzed table indicates that there
are two possible outcomes for the decision in line 27: true and false. Five
of the eight times it was executed, the decision evaluated to false. The
remaining three times, it evaluated to true. Because both possible outcomes
occurred, decision coverage is 100%.

The Conditions analyzed table sheds some additional light on the decision
in line 27. Because this decision consists of two conditions linked by a logical
OR (||) operation, only one condition must evaluate true for the decision to
be true. If the first condition evaluates to true, there is no need to evaluate
the second condition. The first condition, top1 < bottom2, was evaluated
eight times, and was true twice. This means that the second condition was
evaluated only six times. In only one case was it true, which brings the total
true occurrences for the decision to three, as reported in the Decisions
analyzed table.

17-31

17 Coverage Collection During Simulation

MCDC coverage looks for decision reversals that occur because one condition
outcome changes from T to F or from F to T. The MC/DC analysis table
identifies all possible combinations of outcomes for the conditions that lead
to a reversal in the decision. The character x is used to indicate a condition
outcome that is irrelevant to the decision reversal. Decision-reversing
condition outcomes that are not achieved during simulation are marked with a
set of parentheses. There are no parentheses, therefore all decision-reversing
outcomes occurred and MCDC coverage is complete for the decision in line 27.

17-32

Model Coverage for MATLAB® Functions

Coverage for Line 30. The line 30 decision, if (right1 < left2 ||
right2 < left1), is nested in the if statement of the line 27 decision and is
evaluated only if the line 27 decision is false. Because the line 27 decision
evaluated false five times, line 30 is evaluated five times, three of which are
false. Because both the true and false outcomes are achieved, decision
coverage for line 30 is 100%.

Because line 30, like line 27, has two conditions related by a logical OR
operator (||), condition 2 is tested only if condition 1 is false. Because
condition 1 tests false five times, condition 2 is tested five times. Of these,
condition 2 tests true two times and false three times, which accounts for
the two occurrences of the true outcome for this decision.

Because the first condition of the line 30 decision does not test true, both
outcomes do not occur for that condition and the condition coverage for
the first condition is highlighted with a rose color. MCDC coverage is also
highlighted in the same way for a decision reversal based on the true outcome
for that condition.

17-33

17 Coverage Collection During Simulation

Coverage for run_intersect_test. On the Details tab, the metrics that
summarize coverage for the entire run_intersect_test function are reported
and repeated as shown.

17-34

Model Coverage for MATLAB® Functions

The results summarized in the coverage metrics summary can be expressed
in the following conclusions:

• There are eight decision outcomes reported for run_intersect_test in
the line reports:

- One for line 1 (executed)

- Two for line 6 (true and false)

- One for line 14 (executed)

- Two for line 27 (true and false)

- Two for line 30 (true and false).

The decision coverage for each line shows 100% decision coverage. This
means that decision coverage for run_intersect_test is eight of eight
possible outcomes, or 100%.

• There are four conditions reported for run_intersect_test in the line
reports. Lines 27 and 30 each have two conditions, and each condition has
two condition outcomes (true and false), for a total of eight condition
outcomes in run_intersect_test. All conditions tested positive for both
the true and false outcomes except the first condition of line 30 (right1
< left2). This means that condition coverage for run_intersect_test is
seven of eight, or 88%.

• The MCDC coverage tables for decision lines 27 and 30 each list two cases
of decision reversal for each condition, for a total of four possible reversals.

17-35

17 Coverage Collection During Simulation

Only the decision reversal for a change in the evaluation of the condition
right1 < left2 of line 30 from true to false did not occur during
simulation. This means that three of four, or 75% of the possible reversal
cases were tested for during simulation, for a coverage of 75%.

Model Coverage for MATLAB Functions in an External File
Using the same model in “Model Coverage for MATLAB Function Blocks”
on page 17-25, suppose the MATLAB functions run_intersect_test
and rect_intersect are stored in an external MATLAB file named
run_intersect_test.m.

To collect coverage for MATLAB functions in an external file, on the Coverage
Settings dialog box, on the Coverage tab, select Coverage for External
MATLAB files.

After simulation, the model coverage report summary contains sections for
the top-level model and for the external function.

The model coverage report for run_intersect_test.m reports the same
coverage data as if the functions were stored in the MATLAB Function block.

For a detailed example of a model coverage report for a MATLAB function in
an external file, see “External MATLAB File Coverage Report” on page 18-4.

17-36

Model Coverage for MATLAB® Functions

Model Coverage for Simulink Design Verifier MATLAB Functions
If the MATLAB code includes any of the following Simulink Design Verifier
functions configured for code generation, you can measure coverage:

• sldv.condition

• sldv.test

• sldv.assume

• sldv.prove

For this example, consider the following model that contains a MATLAB
Function block.

The MATLAB Function block contains the following code:

function y = fcn(u)
% This block supports MATLAB for code generation.

sldv.condition(u > -30)
sldv.test(u == 30)
y = 1;

To collect coverage for Simulink Design Verifier MATLAB functions, on the
Coverage Settings dialog box, on the Coverage tab, select Simulink Design
Verifier.

After simulation, the model coverage report listed coverage for the
sldv.condition and sldv.test functions. For sldv.condition, the
expression u > -30 evaluated to true 51 times. For sldv.test, the
expression u == 30 evaluated to true 51 times.

17-37

17 Coverage Collection During Simulation

17-38

Model Coverage for MATLAB® Functions

For an example of model coverage data for Simulink Design Verifier blocks,
see “Simulink® Design Verifier™ Coverage” on page 14-8.

17-39

17 Coverage Collection During Simulation

Model Coverage for Stateflow Charts

In this section...

“How Model Coverage Reports Work for Stateflow Charts” on page 17-40

“Specify Coverage Report Settings” on page 17-41

“Cyclomatic Complexity” on page 17-41

“Decision Coverage” on page 17-42

“Condition Coverage” on page 17-46

“MCDC Coverage” on page 17-47

“Simulink® Design Verifier™ Coverage” on page 17-47

“Model Coverage Reports for Stateflow Charts” on page 17-49

“Model Coverage for Stateflow State Transition Tables” on page 17-59

“Model Coverage for Stateflow Atomic Subcharts” on page 17-60

“Model Coverage for Stateflow Truth Tables” on page 17-63

“Colored Stateflow Chart Coverage Display” on page 17-68

How Model Coverage Reports Work for Stateflow
Charts
To generate aModel Coverage report, selectAnalysis > Coverage > Settings
and specify the desired options on the Reporting tab of the Coverage Settings
dialog box. For Stateflow charts, the Simulink Verification and Validation
software records the execution of the chart itself and the execution of states,
transition decisions, and individual conditions that compose each decision.
After simulation ends, the model coverage reports on how thoroughly a model
was tested. The report shows:

• How many times each exclusive substate is entered, executed, and exited
based on the history of the superstate

• How many times each transition decision has been evaluated as true or
false

• How many times each condition has been evaluated as true or false

17-40

Model Coverage for Stateflow® Charts

Note To measure model coverage data for a Stateflow chart, you must have a
Stateflow license.

Specify Coverage Report Settings
To specify coverage report settings, select Analysis > Coverage > Settings
in the Simulink Editor.

By selecting the Generate HTML Report option in the Coverage Settings
dialog box, you can create an HTML report containing the coverage data
generated during simulation of the model. The report appears in the MATLAB
Help browser at the end of simulation.

By selecting the Generate HTML Report option, you also enable the
selection of different coverages that you can specify for your reports. The
following sections address only coverage metrics that affect reports for
Stateflow charts. These metrics include decision coverage, condition coverage,
and MCDC coverage.

Cyclomatic Complexity
Cyclomatic complexity is a measure of the complexity of a software module
based on its edges, nodes, and components within a control-flow chart. It
provides an indication of how many times you need to test the module.

The calculation of cyclomatic complexity is as follows:

CC = E - N + p

where CC is the cyclomatic complexity, E is the number of edges, N is the
number of nodes, and p is the number of components.

Within the Model Coverage tool, each decision is exactly equivalent to a single
control flow node, and each decision outcome is equivalent to a control flow
edge. Any additional structure in the control-flow chart is ignored since it
contributes the same number of nodes as edges and therefore has no effect on
the complexity calculation. Therefore, you can express cyclomatic complexity
as follows:

17-41

17 Coverage Collection During Simulation

CC = OUTCOMES - DECISIONS + p

For analysis purposes, each chart counts as a single component.

Decision Coverage
Decision coverage interprets a model execution in terms of underlying
decisions where behavior or execution must take one outcome from a set of
mutually exclusive outcomes.

Note Full coverage for an object of decision means that every decision has
had at least one occurrence of each of its possible outcomes.

Decisions belong to an object making the decision based on its contents or
properties. The following table lists the decisions recorded for model coverage
for the Stateflow objects owning them. The sections that follow the table
describe these decisions and their possible outcomes.

Object Possible Decisions

Chart If a chart is a triggered Simulink block, it must decide
whether or not to execute its block.

If a chart contains exclusive (OR) substates, it must decide
which of its states to execute.

State If a state is a superstate containing exclusive (OR) substates,
it must decide which substate to execute.

If a state has on event name actions (which might include
temporal logic operators), the state must decide whether or
not to execute the actions.

Transition If a transition is a conditional transition, it must decide
whether or not to exit its active source state or junction and
enter another state or junction.

17-42

Model Coverage for Stateflow® Charts

Chart as a Triggered Simulink Block Decision
If the chart is a triggered block in a Simulink model, the decision to execute
the block is tested. If the block is not triggered, there is no decision to execute
the block, and the measurement of decision coverage is not applicable (NA).

Chart Containing Exclusive OR Substates Decision
If the chart contains exclusive (OR) substates, the decision on which substate
to execute is tested. If the chart contains only parallel AND substates, this
coverage measurement is not applicable (NA).

Superstate Containing Exclusive OR Substates Decision
Since a chart is hierarchically processed from the top down, procedures such
as exclusive (OR) substate entry, exit, and execution are sometimes decided
by the parenting superstate.

Note Decision coverage for superstates applies only to exclusive (OR)
substates. A superstate makes no decisions for parallel (AND) substates.

Since a superstate must decide which exclusive (OR) substate to process, the
number of decision outcomes for the superstate is the number of exclusive
(OR) substates that it contains. In the examples that follow, the choice of
which substate to process can occur in one of three possible contexts.

Note Implicit transitions appear as dashed lines in the following examples.

17-43

17 Coverage Collection During Simulation

Context Example Decisions That Occur

Active call States A and A1 are active. • The parent of states A and B
must decide which of these
states to process. This decision
belongs to the parent. Since A
is active, it is processed.

• State A, the parent of states
A1 and A2, must decide which
of these states to process.
This decision belongs to state
A. Since A1 is active, it is
processed.

During processing of state A1, all
outgoing transitions are tested.
This decision belongs to the
transition and not to the parent
state A. In this case, the transition
marked by condition C2 is tested
and a decision is made whether to
take the transition to A2 or not.

Implicit
substate exit

A transition takes place whose source is
superstate A and whose destination is
state B.

If the superstate has two exclusive
(OR) substates, it is the decision
of superstate A which substate

17-44

Model Coverage for Stateflow® Charts

Context Example Decisions That Occur

performs the implicit transition
from substate to superstate.

Substate entry
with a history
junction

A history junction records which substate
was last active before the superstate was
exited.

If that superstate becomes
the destination of one or more
transitions, the history junction
decides which previously active
substate to enter.

For more information, see “State Details Report Section” on page 17-52.

17-45

17 Coverage Collection During Simulation

State with On Event_Name Action Statement Decision
A state that has an on event_name action statement must decide whether to
execute that statement based on the reception of a specified event or on an
accumulation of the specified event when using temporal logic operators.

Conditional Transition Decision
A conditional transition is a transition with a triggering event and/or a
guarding condition. In a conditional transition from one state to another, the
decision to exit one state and enter another is credited to the transition itself.

Note Only conditional transitions receive decision coverage. Transitions
without decisions are not applicable to decision coverage.

Condition Coverage
Condition coverage reports on the extent to which all possible outcomes are
achieved for individual subconditions composing a transition decision.

Note Full condition coverage means that all possible outcomes occurred for
each subcondition in the test of a decision.

For example, for the decision [A & B & C] on a transition, condition coverage
reports on the true and false occurrences of each of the subconditions A, B,
and C. This results in eight possible outcomes: true and false for each of
three subconditions.

Outcome A B C

1 T T T

2 T T F

3 T F T

4 T F F

5 F T T

17-46

Model Coverage for Stateflow® Charts

Outcome A B C

6 F T F

7 F F T

8 F F F

For more information, see “Transition Details Report Section” on page 17-55.

MCDC Coverage
The Modified Condition Decision Coverage (MCDC) option reports a test’s
coverage of occurrences in which changing an individual subcondition within
a transition results in changing the entire transition trigger expression from
true to false or false to true.

Note If matching true and false outcomes occur for each subcondition,
coverage is 100%.

For example, if a transition executes on the condition [C1 & C2 & C3 | C4
& C5], the MCDC report for that transition shows actual occurrences for
each of the five subconditions (C1, C2, C3, C4, C5) in which changing its
result from true to false is able to change the result of the entire condition
from true to false.

Simulink Design Verifier Coverage
You can use the following Simulink Design Verifier functions inside Stateflow
charts:

• sldv.condition

• sldv.test

• sldv.assume

• sldv.prove

17-47

17 Coverage Collection During Simulation

If you do not have a Simulink Design Verifier license, you can collect model
coverage for a Stateflow chart containing these functions, but you cannot
analyze the model using the Simulink Design Verifier software.

When you specify the Simulink Design Verifier coverage metric in the
Coverage Settings dialog box, the Simulink Verification and Validation
software records coverage for these functions.

Each of these functions evaluates an expression expr, for example,
sldv.test(expr), where expr is any valid Boolean MATLAB expression.
Simulink Design Verifier coverage measures the number of time steps that
the expression expr evaluates to true.

If expr is true for at least one time step, Simulink Design Verifier coverage
for that function is 100%. Otherwise, the Simulink Verification and Validation
software reports coverage for that function as 0%.

Consider a model that contains this Stateflow chart:

To collect coverage for Simulink Design Verifier functions, on the Coverage
Settings dialog box, on the Coverage tab, select Simulink Design Verifier.

After simulation, the model coverage report lists coverage for the
sldv.condition, sldv.assume, sldv.prove, and sldv.test functions.

17-48

Model Coverage for Stateflow® Charts

Model Coverage Reports for Stateflow Charts

• “Summary Report Section” on page 17-50

• “Subsystem and Chart Details Report Sections” on page 17-51

• “State Details Report Section” on page 17-52

• “Transition Details Report Section” on page 17-55

The following sections of a Model Coverage report were generated by
simulating the sf_boiler model, which includes the Bang-Bang Controller
chart. The coverage metrics for Decision, Condition, and MCDC are
enabled for this report.

17-49

17 Coverage Collection During Simulation

Summary Report Section
The Summary section shows coverage results for the entire test and appears
at the beginning of the Model Coverage report.

Each line in the hierarchy summarizes the coverage results at that level and
the levels below it. You can click a hyperlink to a later section in the report
with the same assigned hierarchical order number that details that coverage
and the coverage of its children.

The top level, sf_boiler, is the Simulink model itself. The second level,
Bang-Bang Controller, is the Stateflow chart. The next levels are superstates
within the chart, in order of hierarchical containment. Each superstate

17-50

Model Coverage for Stateflow® Charts

uses an SF: prefix. The bottom level, Boiler Plant model, is an additional
subsystem in the model.

Subsystem and Chart Details Report Sections
When recording coverage for a Stateflow chart, the Simulink Verification and
Validation software reports two types of coverage for the chart—Subsystem
and Chart.

• Subsystem — This section reports coverage for the chart:

- Coverage (this object): Coverage data for the chart as a container
object

- Coverage (inc.) descendants: Coverage data for the chart and the
states and transitions in the chart.

If you click the hyperlink of the subsystem name in the section title, the
Bang-Bang Controller block is highlighted in the block diagram.

Decision coverage is not applicable (NA) because this chart does not have an
explicit trigger. Condition coverage and MCDC are not applicable (NA) for a
chart, but apply to its descendants.

• Chart — This section reports coverage for the chart:

- Coverage (this object): Coverage data for the chart and its inputs

17-51

17 Coverage Collection During Simulation

- Coverage (inc.) descendants: Coverage data for the chart and the
states and transitions in the chart.

If you click the hyperlink of the chart name in the section title, the chart
opens in the Stateflow Editor.

Decision coverage is listed appears for the chart and its descendants.
Condition coverage and MCDC are not applicable (NA) for a chart, but apply
to its descendants.

State Details Report Section
For each state in a chart, the coverage report includes a State section with
details about the coverage recorded for that state.

In the sf_boiler model, the state On resides in the box Heater. On is a
superstate that contains:

• Two substates HIGH and NORM

17-52

Model Coverage for Stateflow® Charts

• A history junction

• The function warm

The coverage report includes a State section on the state On.

17-53

17 Coverage Collection During Simulation

The decision coverage for the On state tests the decision of which substate to
execute.

The three decisions are listed in the report:

• Under Substate executed, which substate to execute when On executes.

17-54

Model Coverage for Stateflow® Charts

• Under Substate exited when parent exited, which substate is active
when On exits. NORM is listed as never being active when On exits because
the coverage tool sees the supertransition from NORM to Off as a transition
from On to Off.

• Under Previously active substate entered due to history, which
substate to reenter when On re-executes. The history junction records the
previously active substate.

Because each decision can result in either HIGH or NORM, the total possible
outcomes are 3 × 2 = 6. The results indicate that five of six possible outcomes
were tested during simulation.

Cyclomatic complexity and decision coverage also apply to descendants
of the On state. The decision required by the condition [warm()] for the
transition from HIGH to NORM brings the total possible decision outcomes to
8. Condition coverage and MCDC are not applicable (NA) for a state.

Note Nodes and edges that make up the cyclomatic complexity calculation
have no direct relationship with model objects (states, transitions, and so on).
Instead, this calculation requires a graph representation of the equivalent
control flow.

Transition Details Report Section
Reports for transitions appear under the report sections of their owning
objects. Transitions do not appear in the model hierarchy of the Summary
section, since the hierarchy is based on superstates that own other Stateflow
objects.

17-55

17 Coverage Collection During Simulation

The decision for this transition depends on the time delay of 40 seconds and
the condition [cold()]. If, after a 40 second delay, the environment is cold

17-56

Model Coverage for Stateflow® Charts

(cold() = 1), the decision to execute this transition and turn the Heater on
is made. For other time intervals or environment conditions, the decision is
made not to execute.

For decision coverage, both true and false outcomes occurred. Because two of
two decision outcomes occurred, coverage was full or 100%.

Condition coverage shows that only 4 of 6 condition outcomes were tested.
The temporal logic statement after(40,sec) represents two conditions:
the occurrence of sec and the time delay after(40,sec). Therefore, three
conditions on the transition exist: sec, after(40,sec), and cold(). Since
each of these decisions can be true or false, six possible condition outcomes
exist.

The Conditions analyzed table shows each condition as a row with the
recorded number of occurrences for each outcome (true or false). Decision
rows in which a possible outcome did not occur are shaded. For example, the
first and the third rows did not record an occurrence of a false outcome.

In the MC/DC report, all sets of occurrences of the transition conditions are
scanned for a particular pair of decisions for each condition in which the
following are true:

• The condition varies from true to false.

• All other conditions contributing to the decision outcome remain constant.

• The outcome of the decision varies from true to false, or the reverse.

For three conditions related by an implied AND operator, these criteria can
be satisfied by the occurrence of these conditions.

17-57

17 Coverage Collection During Simulation

Condition Tested True Outcome False Outcome

1 TTT Fxx

2 TTT TFx

3 TTT TTF

Notice that in each line, the condition tested changes from true to false while
the other condition remains constant. Irrelevant contributors are coded with
an "x" (discussed below). If both outcomes occur during testing, coverage is
complete (100%) for the condition tested.

The preceding report example shows coverage only for condition 2. The false
outcomes required for conditions 1 and 3 did not occur, and are indicated
by parentheses for both conditions. Therefore, condition rows 1 and 3 are
shaded. While condition 2 has been tested, conditions 1 and 3 have not and
MCDC is 33%.

For some decisions, the values of some conditions are irrelevant under certain
circumstances. For example, in the decision [C1 & C2 & C3 | C4 & C5] the
left side of the | is false if any one of the conditions C1, C2, or C3 is false. The
same applies to the right side result if either C4 or C5 is false. When searching
for matching pairs that change the outcome of the decision by changing one
condition, holding some of the remaining conditions constant is irrelevant.
In these cases, the MC/DC report marks these conditions with an "x" to
indicate their irrelevance as a contributor to the result. These conditions
appear as shown.

17-58

Model Coverage for Stateflow® Charts

Consider the first matched pair. Since condition 1 is true in the True outcome
column, it must be false in the matching False outcome column. This makes
the conditions C2 and C3 irrelevant for the false outcome since C1 & C2 &
C3 is always false if C1 is false. Also, since the false outcome is required to
evaluate to false, the evaluation of C4 & C5 must also be false. In this case, a
match was found with C4 = F, making condition C5 irrelevant.

Model Coverage for Stateflow State Transition Tables
State transition tables are an alternative way of expressing modal logic
in Stateflow. Stateflow charts represent modal logic graphically, and state
transition tables can represent equivalent modal logic in tabular form. For
more information, see “Tabular Expression of Modal Logic” in the Stateflow
documentation.

Coverage results for state transition tables are the same as coverage
results for equivalent Stateflow charts, except for a slight difference
that arises in coverage of temporal logic. For example, consider the
temporal logic expression after(4, tick) in the Mode Logic chart of the
slvnvdemo_covfilt example model.

17-59

17 Coverage Collection During Simulation

In chart coverage, the after(4, tick) transition represents two conditions:
the occurrence of tick and the time delay after(4, tick). Since the
temporal event tick is never false, the first condition is not satisfiable, and
you cannot record 100% condition and MC/DC coverage for the transition
after(4, tick).

In state transition table coverage, the after(4, tick) transition represents
a single decision, with no subcondition for the occurrence of tick. Therefore,
only decision coverage is recorded.

For state transition tables containing temporal logic decisions, as in the above
example, condition coverage and MC/DC is not recorded.

Model Coverage for Stateflow Atomic Subcharts
In a Stateflow chart, an atomic subchart is a graphical object that allows you
to reuse the same state or subchart across multiple charts and models.

When you specify to record coverage data for a model during simulation, the
Simulink Verification and Validation software records coverage for any atomic
subcharts in your model. The coverage data records the execution of the
chart itself, and the execution of states, transition decisions, and individual
conditions that compose each decision in the atomic subchart.

Simulate the doc_atomic_subcharts_map_iodata example model and record
decision coverage:

1 Open the doc_atomic_subcharts_map_iodata model.

This model contains two Sine Wave blocks that supply input signals to
the Stateflow chart Chart. Chart contains two atomic subcharts—A and

17-60

Model Coverage for Stateflow® Charts

B—that are linked from the same library chart, also named A. The library
chart contains the following objects:

2 In the Simulink Editor, select Analysis > Coverage > Settings

The Coverage Settings dialog box appears.

3 On the Coverage tab, select Coverage for this model:
doc_atomic_subcharts_map_iodata.

4 On the Reporting tab, select Generate HTML report.

5 Click OK to close the Coverage Settings dialog box.

6 Simulate the doc_atomic_subcharts_map_iodata model.

When the simulation completes, the coverage report opens.

The report provides coverage data for atomic subcharts A and B in the
following forms:

• For the atomic subchart instance and its contents. Decision coverage is not
applicable (NA) because this chart does not have an explicit trigger.

17-61

17 Coverage Collection During Simulation

• For the library chart A and its contents. The chart itself achieves 100%
coverage on the input u1, and 88% coverage on the states and transitions
inside the library chart.

Atomic subchart B is a copy of the same library chart A. The coverage of
the contents of subchart B is identical to the coverage of the contents of
subchart A.

17-62

Model Coverage for Stateflow® Charts

Model Coverage for Stateflow Truth Tables

• “Types of Coverage in Stateflow Truth Tables” on page 17-63

• “Analyze Coverage in Stateflow Truth Tables” on page 17-63

Types of Coverage in Stateflow Truth Tables
Simulink Verification and Validation software reports model coverage for the
decisions the objects make in a Stateflow chart during model simulation. The
report includes coverage for the decisions the truth table functions make.

For this type of
truth table...

The report includes coverage data for...

Stateflow Classic Conditions only.

MATLAB Conditions and only those actions that have decision
points.

Note With the MATLAB for code generation action
language, you can specify decision points in actions
using control flow constructs, such as loops and switch
statements.

Note To measure model coverage data for a Stateflow truth table, you must
have a Stateflow license. For more information about Stateflow truth tables,
see “Decision Logic” in the Stateflow documentation.

Analyze Coverage in Stateflow Truth Tables
If you have a Stateflow license, you can generate a model coverage report
for a truth table.

Consider the following model.

17-63

17 Coverage Collection During Simulation

The Stateflow chart Chart contains the following truth table:

17-64

Model Coverage for Stateflow® Charts

When you simulate the model and collect coverage, the model coverage report
includes the following data:

17-65

17 Coverage Collection During Simulation

The Coverage (this object) column shows no coverage. The reason is that
the container object for the truth table function—the Stateflow chart—does
not decide whether to execute the ttable truth table.

The Coverage (inc. descendants) column shows coverage for the graphical
function. The graphical function has the decision logic that makes the
transitions for the truth table. The transitions in the graphical function
contain the decisions and conditions of the truth table. Coverage for the
descendants in the Coverage (inc. descendants) column includes coverage
for these conditions and decisions. Function calls to the truth table test the
model coverage of these conditions and decisions.

17-66

Model Coverage for Stateflow® Charts

Note See “How Stateflow Software Generates Content for Truth Tables” for
a description of the graphical function for a truth table.

Coverage for the decisions and their individual conditions in the ttable truth
table function are as follows.

Coverage Explanation

No model coverage for the default
decision, D5

All logic that leads to taking a default
decision is based on a false outcome for
all preceding decisions. This means
that the default decision requires no
logic, so there is no model coverage.

13% (1/8) decision coverage The three constants that are inputs
to the truth table (1, 0, 0) cause only
decision D1 to be true. These inputs
satisfy only one of the eight decisions
(D1 through D4, T or F).

Because each condition can have
an outcome value of T or F, three
conditions can have six possible values.
However, decision D4 has only decision
coverage, not condition coverage or
MCDC coverage, because it represents
a decision with a single predicate.

3 of the 18 (17%) condition
coverage

Three decisions D1, D2, and D3 have
condition coverage, because the set of
inputs (1, 0, 0) make only decision D1
true.

17-67

17 Coverage Collection During Simulation

Coverage Explanation

No (0/9) MCDC coverage MCDC coverage looks for decision
reversals that occur because one
condition outcome changes from T to F
or F to T. The simulation tests only one
set of inputs, so the model reverses no
decisions.

Missing coverage The red letters T and F indicate that
model coverage is missing for those
conditions. For decision D1, only the T
decision is satisfied. For decisions D2,
D3, and D4, none of the conditions are
satisfied.

Colored Stateflow Chart Coverage Display
The Model Coverage tool displays model coverage results for individual blocks
directly in Simulink diagrams. If you enable this feature, the Model Coverage
tool:

• Highlights Stateflow objects that receive model coverage during simulation

• Provides a context-sensitive display of summary model coverage
information for each object

Note The coverage tool changes colors only for open charts at the time
coverage information is reported. When you interact with the chart, such
as selecting a transition or a state, colors revert to default values.

For details on enabling and selecting this feature in the Simulink window,
see “Enable Coverage Highlighting” on page 17-6 in the Simulink Verification
and Validation documentation.

17-68

Model Coverage for Stateflow® Charts

Display Model Coverage with Model Coloring
Once you enable display coverage with model coloring, anytime that the model
generates a model coverage report, individual chart objects receiving coverage
appear highlighted with light green or light red.

1 Open the sf_car model.

2 Select Analysis > Coverage > Settings.

3 In the Coverage Settings dialog box, select Coverage for this model.

4 Click OK.

5 Simulate the model.

After simulation ends, chart objects with coverage appear highlighted.

Object highlighting indicates coverage as follows:

• Light green for full coverage

17-69

17 Coverage Collection During Simulation

• Light red for partial coverage

• No color for zero coverage

Note To revert the chart to show original colors, select and deselect any
objects.

6 Click selection_state in the chart.

The following summary report appears.

When you click a highlighted Stateflow object, the summarized coverage
for that object appears in the Coverage Display Window. Clicking the
hyperlink opens the section of the coverage report for this object.

Tip You can set the Coverage Display Window to appear for a block in
response to a hovering mouse cursor instead of a mouse click in one of
two ways:

• Select the downward arrow on the right side of the Coverage Display
Window and select Focus.

• Right-click a colored block and select Coverage > Display details on
mouse-over.

17-70

18

Results Review

• “Types of Coverage Reports” on page 18-2

• “Top-Level Model Coverage Report” on page 18-11

18 Results Review

Types of Coverage Reports
In the Coverage Settings dialog box, on the Report tab, if you select the
Generate HTML report option, the Simulink Verification and Validation
software creates one or more model coverage reports after a simulation.

Report Type Description HTML Report File Name

“Top-Level Model Coverage Report”
on page 18-11

Provides coverage
information for all model
elements, including the
model itself.

model_name_cov.html

“Model Summary Report” on page
18-3

Provides links to coverage
results for referenced
models and external
MATLAB files in the model
hierarchy. Created when
the top-level model includes
Model blocks or calls one or
more external files.

model_name
_summary_cov.html

“Model Reference Coverage Report”
on page 18-4

Created for each referenced
model in the model
hierarchy; has the same
format as the model
coverage report.

reference_model_name
_cov.html

“External MATLAB File Coverage
Report” on page 18-4

Provides detailed coverage
information about any
external MATLAB file that
the model calls. There is
one report for each external
file called from the model.

MATLAB_file_name_cov.html

“Subsystem Coverage Report” on
page 18-8

Model coverage report
includes only coverage
results for the subsystem, if
you select one.

model_name_cov.html;
model_name is the name of
the top-level model

18-2

Types of Coverage Reports

Model Summary Report
If the top-level model contains Model blocks or calls external files,
the software creates a model summary coverage report named
model_name_summary_cov.html. The title of this report is Coverage by
Model.

The summary report lists and provides links to coverage reports for Model
block referenced models and external files called by MATLAB code in the
model. For more information, see “External MATLAB File Coverage Report”
on page 18-4.

The following graphic shows an example of a model summary report. It
contains links to the model coverage report (mExternalMfile), a report for the
Model block (mExternalMfileRef), and three external files called from the
model (externalmfile,I externalmfile1, andexternalmfile2).

18-3

18 Results Review

Model Reference Coverage Report
If your top-level model references a model in a Model block, the software
creates a separate report, named reference_model_name_cov.html, that
includes coverage for the referenced model. This report has the same format
as the “Top-Level Model Coverage Report” on page 18-11. Coverage results
are recorded as if the referenced model was a standalone model; the report
gives no indication that the model is referenced in a Model block.

External MATLAB File Coverage Report
If your top-level model calls any external MATLAB files, select
Coverage for External MATLAB files on the Coverage tab of the
Coverage Settings dialog box. The software creates a report, named
MATLAB_file_name_cov.html, for each distinct file called from the model.
When there are several calls to a given file from the model, the software
creates only one report for that file, but it accumulates coverage from all the
calls to the file. The external MATLAB file coverage report does not include
information about what parts of the model call the external file.

The first section of the external MATLAB file coverage report contains
summary information about the external file, similar to the model coverage
report.

18-4

Types of Coverage Reports

The Details section reports coverage for the external file and the function
in that file.

18-5

18 Results Review

The Details section also lists the content of the file, highlighting the code
lines that have decision points or function definitions.

18-6

Types of Coverage Reports

Coverage results for each of the highlighted code lines follow in the report.
The following graphic shows a portion of these coverage results from the
preceding code example.

18-7

18 Results Review

Subsystem Coverage Report
In the Coverage Settings dialog box, when you select Coverage for this
model, you can click Select Subsystem to request coverage for only the
selected subsystem in the model. The software creates a model coverage report
for the top-level model, but includes coverage results only for the subsystem.

However, if the top-level model calls any external files and you select
Coverage for External MATLAB files in the Coverage Settings dialog box,
the results include coverage for all external files called from:

• The subsystem for which you are recording coverage

• The top-level model that includes the subsystem

If the subsystem parameter Read/Write Permissions is set to
NoReadOrWrite, the software does not record coverage for that subsystem.

18-8

Types of Coverage Reports

For example, in the fuelsys model, you click Select Subsystem, and select
coverage for the feedforward_fuel_rate subsystem.

The report is similar to the model coverage report, except that it includes only
results for the feedforward_fuel_rate subsystem and its contents.

18-9

18 Results Review

18-10

Top-Level Model Coverage Report

Top-Level Model Coverage Report
The Simulink Verification and Validation software always creates a model
coverage report for the top-level model named model_name_cov.html. The
model coverage report contains several sections:

In this section...

“Coverage Summary” on page 18-11

“Details” on page 18-13

“Cyclomatic Complexity” on page 18-21

“Decisions Analyzed” on page 18-23

“Conditions Analyzed” on page 18-24

“MCDC Analysis” on page 18-25

“Cumulative Coverage” on page 18-26

“N-Dimensional Lookup Table” on page 18-29

“Block Reduction” on page 18-35

“Saturate on Integer Overflow Analysis” on page 18-36

“Signal Range Analysis” on page 18-37

“Signal Size Coverage for Variable-Dimension Signals” on page 18-39

“Simulink® Design Verifier™ Coverage” on page 18-40

Coverage Summary
The coverage summary section contains basic information about the model
being analyzed:

• Model Information

• Simulation Optimization Options

• Coverage Options

18-11

18 Results Review

The coverage summary has two subsections:

• Tests— The simulation start and stop time of each test case and any setup
commands that preceded the simulation. The heading for each test case
includes any test case label specified using the cvtest command.

• Summary— Summaries of the subsystem results. To see detailed results
for a specific subsystem, in the Summary subsection, click the subsystem
name.

18-12

Top-Level Model Coverage Report

Details
The Details section reports the detailed model coverage results. Each section
of the detailed report summarizes the results for the metrics that test each
object in the model:

• “Filtered Objects” on page 18-14

• “Model Details” on page 18-15

• “Subsystem Details” on page 18-15

18-13

18 Results Review

• “Block Details” on page 18-16

• “Chart Details” on page 18-17

• “Coverage Details for MATLAB Functions and Simulink® Design Verifier™
Functions” on page 18-18

You can also access a model element Details subsection as follows:

1 Right-click a Simulink element.

2 In the context menu, select Coverage > Report.

Filtered Objects
The Filtered Objects section lists all the objects in the model that were filtered
from coverage recording, and the rationale you specified for filtering those
objects. If the filter rule specifies that all blocks of a certain type be filtered,
all those blocks are listed here.

In the following graphic, several blocks, subsystems, and transitions were
filtered. Two library-linked blocks, protected division and protected division1,
were filtered because their block library was filtered.

18-14

Top-Level Model Coverage Report

Model Details
The Details section contains a results summary for the model as a whole,
followed by a list of elements. Click the model element name to see its
coverage results.

The following graphic shows the Details section for the sldemo_fuelsys
example model.

Subsystem Details
Each subsystem Details section contains a summary of the test coverage
results for the subsystem and a list of the subsystems it contains. The
overview is followed by sections for blocks, charts, and MATLAB functions,
one for each object that contains a decision point in the subsystem.

The following graphic shows the coverage results for the Engine Gas
Dynamics subsystem in the sldemo_fuelsys example model.

18-15

18 Results Review

Block Details
The following graphic shows the coverage results for the MinMax block in the
Mixing & Combustion subsystem of the Engine Gas Dynamics subsystem in
the sldemo_fuelsys example model.

The Uncovered Links element first appears in the Block Details section of
the first block in the model hierarchy that does not achieve 100% coverage.
The first Uncovered Links element has an arrow that links to the Block
Details section in the report of the next block that does not achieve 100%
coverage.

18-16

Top-Level Model Coverage Report

Subsequent blocks that do not achieve 100% coverage have links to the Block
Details sections in the report of the previous and next blocks that do not
achieve 100% coverage.

Chart Details
The following graphic shows the coverage results for the Stateflow chart
control_logic in the sldemo_fuelsys example model.

18-17

18 Results Review

For more information about model coverage reports for Stateflow charts and
their objects, see “Model Coverage for Stateflow Charts” on page 17-40.

Coverage Details for MATLAB Functions and Simulink Design
Verifier Functions
By default, the Simulink Verification and Validation software records
coverage for all MATLAB functions in a model. MATLAB functions are in
MATLAB Function blocks, Stateflow charts, or external MATLAB files.

Note For a detailed example of coverage reports for external MATLAB files,
see “External MATLAB File Coverage Report” on page 18-4.

To record Simulink Design Verifier coverage for sldv.* functions called by
MATLAB functions, and any Simulink Design Verifier blocks, in the Coverage
Settings dialog box, on the Coverage tab, select Simulink Design Verifier.

The following example shows coverage details for a MATLAB function,
hFcnsInExternalEML, that calls four Simulink Design Verifier functions. In
this example, the code for hFcnsInExternalEML resides in an external file.

This example also shows Simulink Design Verifier coverage details for the
following functions:

• sldv.assume

• sldv.condition

• sldv.prove

• sldv.test

In the coverage results, code that achieves 100% coverage is green; code that
achieves less than 100% coverage is red.

18-18

Top-Level Model Coverage Report

Coverage for the hFcnsInExternalEML function and the sldv.* calls is:

18-19

18 Results Review

• Line 1, the function declaration for hFcnsInExternalEMLis green
because the simulation executes that function at least once. fcn calls
hFcnsInExternalEML 11 times during simulation.

Line 4, sldv.assume(u1 > u2), achieves 0% coverage because u1 > u2
never evaluates to true.

• Line 5, sldv.condition(u1 == 0), achieves 100% coverage because u1 ==
0 evaluates to true for at least one time step.

• Line 6, switch u1, achieves 25% coverage because only one of the four
outcomes in the switch statement (case 0) occurs during simulation.

18-20

Top-Level Model Coverage Report

• Line 17, sldv.test(y > u1); sldv.test (y == 4) achieves 50%
coverage. The first sldv.test call achieves 100% coverage, but the second
sldv.test call achieves 0% coverage.

For more information about coverage for MATLAB functions, see “Model
Coverage for MATLAB Functions” on page 17-22.

For more information about coverage for Simulink Design Verifier functions,
see “Simulink® Design Verifier™ Coverage” on page 14-8.

Cyclomatic Complexity
You can specify that the model coverage report include cyclomatic complexity
numbers in two locations in the report:

18-21

18 Results Review

• The Summary section contains the cyclomatic complexity numbers for
each object in the model hierarchy. For a subsystem or Stateflow chart,
that number includes the cyclomatic complexity numbers for all their
descendants.

• The Details sections for each object list the cyclomatic complexity numbers
for all individual objects.

18-22

Top-Level Model Coverage Report

Decisions Analyzed
The Decisions analyzed table lists possible outcomes for a decision and the
number of times that an outcome occurred in each test simulation. Outcomes
that did not occur are in red highlighted table rows.

The following graphic shows the Decisions analyzed table for the Saturate
block in the Throttle & Manifold subsystem of the Engine Gas Dynamics
subsystem in the sldemo_fuelsys example model.

18-23

18 Results Review

To display and highlight the block in question, click the block name at the top
of the section containing the block’s Decisions analyzed table.

Conditions Analyzed
The Conditions analyzed table lists the number of occurrences of true and
false conditions on each input port of the corresponding block.

18-24

Top-Level Model Coverage Report

MCDC Analysis
The MC/DC analysis table lists the MCDC input condition cases represented
by the corresponding block and the extent to which the reported test cases
cover the condition cases.

Each row of the MC/DC analysis table represents a condition case for a
particular input to the block. A condition case for input n of a block is a
combination of input values. Input n is called the deciding input of the
condition case. Changing the value of input n alone changes the value of
the block’s output.

The MC/DC analysis table shows a condition case expression to represent a
condition case. A condition case expression is a character string where:

• The position of a character in the string corresponds to the input port
number.

18-25

18 Results Review

• The character at the position represents the value of the input. (T means
true; F means false).

• A boldface character corresponds to the value of the deciding input.

For example, FTF represents a condition case for a three-input block where
the second input is the deciding input.

The Decision/Condition column specifies the deciding input for an input
condition case. The True Out column specifies the deciding input value that
causes the block to output a true value for a condition case. The True Out
entry uses a condition case expression, for example, FF, to express the values
of all the inputs to the block, with the value of the deciding variable in bold.

Parentheses around the expression indicate that the specified combination of
inputs did not occur during the first (or only) test case included in this report.
In other words, the test case did not cover the corresponding condition case.
The False Out column specifies the deciding input value that causes the
block to output a false value and whether the value actually occurred during
the first (or only) test case included in the report.

If you select Treat Simulink Logic blocks as short-circuited in the
Coverage Settings dialog box, MC/DC coverage analysis does not verify
whether short-circuited inputs actually occur. The MC/DC analysis table uses
an x in a condition expression (for example, TFxxx) to indicate short-circuited
inputs that were not analyzed by the tool.

If you enable this feature and Logic blocks are short-circuited while collecting
model coverage, you might not be able to achieve 100% coverage for that block.

Cumulative Coverage
On the Results tab, if you select Save cumulative results in workspace
variable and on the Report tab, Cumulative runs, the results of each
simulation are saved and recorded in the report.

In a cumulative coverage report, the results located in the right-most area in
all tables reflect the running total value. The report is organized so that you
can easily compare the additional coverage from the most recent run with the
coverage from all prior runs in the session.

18-26

Top-Level Model Coverage Report

A cumulative coverage report contains information about:

• Current Run — The coverage results of the simulation just completed.

• Delta — Percentage of coverage added to the cumulative coverage achieved
with the simulation just completed. If the previous simulation’s cumulative
coverage and the current coverage are nonzero, the delta may be 0 if the
new coverage does not add to the cumulative coverage.

• Cumulative — The total coverage collected for the model up to, but not
including, the simulation just completed.

After running three test cases for the slvnv_autopilot_test_harnessmodel,
the Summary report shows how much additional coverage the third test case
achieved and the cumulative coverage achieved for the first two test cases.

The Decisions analyzed table for cumulative coverage contains three
columns of data about decision outcomes that represent the current run, the
delta since the last run, and the cumulative data, respectively.

18-27

18 Results Review

The Conditions analyzed table uses column headers #n T and #n F to indicate
results for individual test cases. The table uses Tot T and Tot F for the
cumulative results. You can identify the true and false conditions on each
input port of the corresponding block for each test case.

The MC/DC analysis #n True Out and #n False Out columns show the
condition cases for each test case. The Total Out T and Total Out F column
show the cumulative results.

18-28

Top-Level Model Coverage Report

Note You can calculate cumulative coverage for reusable subsystems and
Stateflow constructs at the command line. For more information, see “Obtain
Cumulative Coverage for Reusable Subsystems and Stateflow Constructs”
on page 20-9.

N-Dimensional Lookup Table
The following interactive chart summarizes the extent to which elements of a
lookup table are accessed. In this example, two Sine Wave blocks generate x
and y indices that access a 2-D Lookup Table block of 10-by-10 elements filled
with random values.

18-29

18 Results Review

In this model, the lookup table indices are 1, 2,..., 10 in each direction. The
Sine Wave 2 block is out of phase with the Sine Wave 1 block by pi/2 radians.
This generates x and y numbers for the edge of a circle, which you see when
you examine the resulting Lookup Table coverage.

18-30

Top-Level Model Coverage Report

The report contains a two-dimensional table representing the elements of the
lookup table. The element indices are represented by the cell border grid
lines, which number 10 in each dimension. Areas where the lookup table
interpolates between table values are represented by the cell areas. Areas
of extrapolation left of element 1 and right of element 10 are represented by
cells at the edge of the table, which have no outside border.

The number of values interpolated (or extrapolated) for each cell (execution
counts) during testing is represented by a shade of green assigned to the
cell. Each of six levels of green shading and the range of execution counts
represented are displayed on one side of the table.

If you click an individual table cell, you see a dialog box that displays the index
location of the cell and the exact number of execution counts generated for it

18-31

18 Results Review

during testing. The following example shows the contents of a color-shaded
cell on the right edge of the circle.

The selected cell is outlined in red. You can also click the extrapolation cells
on the edge of the table.

A bold grid line indicates that at least one block input equal to its exact index
value occurred during the simulation. Click the border to display the exact
number of hits for that index value.

The following example model uses an n-D Lookup Table block of 10-by-10-by-5
elements filled with random values.

18-32

Top-Level Model Coverage Report

Both the x and y table axes have the indices 1, 2,..., 10. The z axis has the
indices 10, 20,..., 50. Lookup table values are accessed with x and y indices
that the two Sine Wave blocks generated, in the preceding example, and a z
index that a Ramp block generates.

After simulation, you see the following lookup table report.

Instead of a two-dimensional table, the link Force Map Generation displays
the following tables:

18-33

18 Results Review

Lookup table coverage for a three-dimensional lookup table block is reported
as a set of two-dimensional tables.

The vertical bars represent the exact z index values: 10, 20, 30, 40, 50. If a
vertical bar is bold, this indicates that at least one block input was equal to
the exact index value it represents during the simulation. Click a bar to get a
coverage report for the exact index value that bar represents.

You can report lookup table coverage for lookup tables of any dimension.
Coverage for four-dimensional tables is reported as sets of three-dimensional
sets, like those in the preceding example. Five-dimensional tables are
reported as sets of sets of three-dimensional sets, and so on.

18-34

Top-Level Model Coverage Report

Block Reduction
All model coverage reports indicate the status of the Simulink Block
reduction parameter at the beginning of the report. In the following
example, you set Force block reduction off.

In the next example, you enabled the Simulink Block reduction parameter,
and you did not set Force block reduction off.

Consider the following model where the simulation does not execute the
MinMax1 block because there is only one input—the constant 3.

18-35

18 Results Review

If you set Force block reduction off, the report contains no coverage data
for this block because the minimum input to the MinMax1 block is always 1.

If you do not set Force block reduction off, the report contains no coverage
data for reduced blocks.

Saturate on Integer Overflow Analysis
On the Coverage tab, if you select the Saturate on integer overflow
coverage metric, the software creates a Saturation on Overflow analyzed table
in the model coverage report for each block with the Saturate on integer
overflow parameter selected.

18-36

Top-Level Model Coverage Report

The Saturation on Overflow analyzed table lists the number of times a block
saturates on integer overflow, indicating a true decision. If the block does not
saturate on integer overflow, the table indicates a false decision. Outcomes
that do not occur are in red highlighted table rows.

The following graphic shows the Saturation on Overflow analyzed table for
the MinMax block in the Mixing & Combustion subsystem of the Engine Gas
Dynamics subsystem in the sldemo_fuelsys example model.

To display and highlight the block in question, click the block name at the top
of the section containing the block’s Saturation on Overflow analyzed table.

Signal Range Analysis
If you select Signal Range Coverage, the software creates a Signal Range
Analysis section at the bottom of the model coverage report. This section

18-37

18 Results Review

lists the maximum and minimum signal values for each output signal in the
model measured during simulation.

Access the Signal Range Analysis report quickly with the Signal Ranges link
in the nonscrolling region at the top of the model coverage report, as shown
below in the sldemo_fuelsys example model report.

Each block is reported in hierarchical fashion; child blocks appear directly
under parent blocks. Each block name in the Signal Ranges report is a link.
For example, select the EGO sensor link to display this block highlighted
in its native diagram.

18-38

Top-Level Model Coverage Report

Signal Size Coverage for Variable-Dimension Signals
If you select Signal Size, the software creates a Variable Signal Widths
section after the Signal Ranges data in the model coverage report. This
section lists the maximum and minimum signal sizes for all output ports
in the model that have variable-size signals. It also lists the memory that
Simulink allocated for that signal, as measured during simulation. This list
does not include signals whose size does not vary during simulation.

The following example shows the Variable Signal Widths section in a coverage
report. In this example, the Abs block signal size varied from 2 to 5, with
an allocation of 5.

18-39

18 Results Review

Each block is reported in hierarchical fashion; child blocks appear directly
under parent blocks. Each block name in the Variable Signal Widths list is a
link. Clicking on the link highlights the corresponding block in the Simulink
Editor. After the analysis, the variable-size signals have a wider line design.

Simulink Design Verifier Coverage
If you select Simulink Design Verifier, the analysis collects coverage data
for all Simulink Design Verifier blocks in your model.

For an example of how this works, open the sldvdemo_debounce_testobjblks
model.

This model contains two Test Objective blocks:

18-40

Top-Level Model Coverage Report

• The True block defines a property that the signal have a value of 2.

• The Edge block, inside the Masked Objective subsystem, describes the
property where the output of the AND block in the Masked Objective
subsystem changes from 2 to 1.

The Simulink Design Verifier software analyzes this model and produces a
harness model that contains test cases that achieve certain test objectives.
To see if the original model achieves those objectives, simulate the harness
model and collect model coverage data. The model coverage tool analyzes
any decision points or values within an interval that you specify in the Test
Objective block.

In this example, the coverage report shows that you achieved 100% coverage
of the True block because the signal value was 2 at least once. The signal
value was 2 in 6 out of 14 time steps.

The input signal to the Edge block achieved a value of True once out of 14
time steps.

18-41

18 Results Review

18-42

19

Excluding Model Objects
From Coverage

• “Coverage Filtering” on page 19-2

• “Coverage Filter Rules and Files” on page 19-3

• “Model Objects That You Can Exclude From Coverage” on page 19-4

• “Create, Edit, and View Coverage Filter Rules for a Simulink Model” on
page 19-5

• “Manage Coverage Filter Rules Using the Coverage Filter Viewer” on
page 19-10

• “Filter Model Objects to Refine Coverage Results” on page 19-12

19 Excluding Model Objects From Coverage

Coverage Filtering

In this section...

“What Is Coverage Filtering?” on page 19-2

“When to Use Coverage Filtering” on page 19-2

What Is Coverage Filtering?
Coverage filtering is excluding model objects from model coverage when you
simulate your Simulink model. You specify which objects you want to be
excluded from coverage recording.

After you specify the objects to exclude, when you simulate your model,
Simulink Verification and Validation software does not record coverage for
filtered objects in your model.

When to Use Coverage Filtering
You use coverage filtering to facilitate a bottom-up approach to recording
model coverage. If you have a large model, there may be design elements
that intentionally do not record 100% coverage. You might also have several
design elements that do not record 100% coverage that must record 100%
coverage. You can temporarily or permanently eliminate these elements from
coverage recording to focus on a subset of objects for testing and modification.

This approach allows you to iterate more efficiently—focus on a small
problem, fix it, and then move on to resolve the next small problem. Before
recording coverage for the entire model, you can resolve missing coverage
problems with individual parts of the model.

19-2

Coverage Filter Rules and Files

Coverage Filter Rules and Files

In this section...

“What Is a Coverage Filter Rule?” on page 19-3

“What Is a Coverage Filter File?” on page 19-3

What Is a Coverage Filter Rule?
A coverage filter rule is a rule that specifies a model object or set of objects
to exclude from coverage recording:

Each coverage filter rule includes the following fields:

• Name—Name or path of the object to be filtered from coverage

• Type—Whether a specific object is filtered or all objects of a given type
are filtered

• Rationale—An optional description that explains why this object is
filtered from coverage

What Is a Coverage Filter File?
A coverage filter file is a collection of coverage filter rules. Each rule specifies
one or more objects to exclude from coverage recording.

To apply the coverage filter rules during coverage recording, you must first
attach a coverage filter file to your model. After you attach the coverage filter
file, when you simulate the model, the specified objects are excluded from
coverage. You can attach a coverage filter file to several Simulink models.
However, a model can have only one attached coverage filter file.

MATLAB saves coverage filter files in the MATLAB Current Folder, unless
you specify a different folder. The default name for a coverage filter file is
<model_name>_covfilter.cvf.

If you use the default file name and the coverage filter file exists on the
MATLAB path, each time you open the model, you see the coverage filter
rules, unless another coverage filter file is already attached to that model.

19-3

19 Excluding Model Objects From Coverage

Model Objects That You Can Exclude From Coverage
In your model, the objects that you can filter from coverage recording are:

• Simulink blocks that receive coverage, including MATLAB Function blocks

• Subsystems and their contents. When you exclude a subsystem from
coverage recording, none of the objects inside the subsystem record
coverage.

• Individual library-linked blocks or charts

• All reference blocks linked to a library

• Stateflow charts, subcharts, states, transitions, and events

For a complete list of model objects that receive coverage, see “Model Objects
That Receive Coverage” on page 15-2.

19-4

Create, Edit, and View Coverage Filter Rules for a Simulink® Model

Create, Edit, and View Coverage Filter Rules for a Simulink
Model

In this section...

“Create and Edit Coverage Filter Rules” on page 19-5

“Save Coverage Filter to File” on page 19-7

“Attach Coverage Filter File to Model” on page 19-8

“View Coverage Filter Rules in Your Model” on page 19-8

“Remove Coverage Filter Rules” on page 19-9

Create and Edit Coverage Filter Rules

• “Create a Coverage Filter Rule” on page 19-5

• “Add Rationale to a Coverage Filter Rule” on page 19-6

• “Create Additional Coverage Filter Rules” on page 19-7

Create a Coverage Filter Rule
To create a coverage filter rule:

1 In the Coverage Settings dialog box, enable model coverage.

2 In the model window, right-click a model object and select
Coverage > Exclude.

The following table lists the Exclude menu options. Depending on which
option you select, the Type field is automatically set for the coverage filter
rule you selected; you cannot override the value in the Type field.

If you select Coverage > ... The rule type is ...

Exclude this block by block path

Exclude all blocks with type
<block_type>

by block type

19-5

19 Excluding Model Objects From Coverage

If you select Coverage > ... The rule type is ...

Exclude all blocks with type MATLAB
Function

by block type

Exclude all blocks with type Truth Table by block type

Exclude subsystem with all dependents by subsystem

Exclude referenced library:
<library_name>

by library reference

Exclude subsystem with all descendants by subsystem

Exclude chart with all descendants by chart

Exclude mask type <mask name> by mask type

Exclude state with all descendants by state

Exclude this transition by transition

Exclude temporal event <event_name> by temporal event

Add Rationale to a Coverage Filter Rule
Optionally, you can add text that describes why you want to exclude that
object or objects from coverage recording, and might be useful to others who
review the coverage for your model. When you add a new coverage filter rule,
the Coverage Filter Viewer opens. To add the rationale:

1 Double-click the Rationale field for the rule.

2 Delete the existing text.

3 Add the rationale for excluding this object.

The following graphic shows examples of text in the Rationale field.

19-6

Create, Edit, and View Coverage Filter Rules for a Simulink® Model

Note The Rationale field is the only coverage filter rule field that you can
edit in the Coverage Filter Viewer.

Create Additional Coverage Filter Rules
From the Coverage Filter Viewer, you can navigate back to the model to
create as many coverage filter rules as you need. To return to the model
window, click Add new rule by right-clicking in the model.

For each rule that you add, the Coverage Filter Viewer opens so that you can
specify a rationale for excluding that object from coverage.

Save Coverage Filter to File
After you define the coverage filter rules, save the rules to a file so that you
can reuse them with this model or with other models. By default, coverage
filter files are named <model_name>_covfilter.cvf.

19-7

19 Excluding Model Objects From Coverage

In the Coverage Filter Viewer:

1 In the File name field, specify a file name for the filter file or accept the
default file name.

2 Click Apply to save the coverage filter rules to that file.

If you make multiple changes to the coverage filter rules, apply the changes
to the coverage filter file each time.

Attach Coverage Filter File to Model
Attach a coverage filter file to your model so that each time you open the
model, the coverage filter rules apply when you simulate your model.

In the Coverage Filter Viewer:

1 Select Attach file to model.

2 Click Apply.

Note You can also attach a coverage filter file to your model in the Coverage
Settings dialog box, on the Filter tab.

You can have only one coverage filter file attached to a model at a time. If
you attach a different coverage filter file, the newly attached file replaces
the previously attached file.

Two or more models can have the same coverage filter file attached. If a model
has an attached filter file that contains coverage filter rules for specific objects
in a different model, those rules are ignored during coverage recording.

View Coverage Filter Rules in Your Model
Whenever you define a coverage filter rule or remove an existing coverage
filter rule, the Coverage Filter Viewer opens. This dialog box lists all the
coverage filter rules for your model. For more information, see “Manage
Coverage Filter Rules Using the Coverage Filter Viewer” on page 19-10.

19-8

Create, Edit, and View Coverage Filter Rules for a Simulink® Model

To open the Coverage Filter Viewer, right-click anywhere in the model
window and select Coverage > Open Filter Viewer.

If you are inside a subsystem, you can view any coverage filter rule attached
to the subsystem. To open the Coverage Filter Viewer, right-click any object
inside the subsystem and select Coverage > Show filter parent.

Remove Coverage Filter Rules

• “Remove a Coverage Filter Rule” on page 19-9

• “Remove Multiple Coverage Filter Rules” on page 19-9

Remove a Coverage Filter Rule
To remove a model object from coverage filtering, in the Simulink Editor,
right-click the object and select Coverage > Remove. The Coverage Filter
Viewer opens. The coverage filter rule for the selected model object is no
longer on the list of rules.

Remove Multiple Coverage Filter Rules
Use the Coverage Filter Viewer to remove multiple coverage filter rules at
once:

1 To open the Coverage Filter Viewer, right-click anywhere in the model and
select Coverage > Open Filter Viewer.

2 Select all the rules that you want to remove.

3 Click Remove rule.

19-9

19 Excluding Model Objects From Coverage

Manage Coverage Filter Rules Using the Coverage Filter
Viewer

In the Coverage Filter Viewer, you can:

• Review and manage the coverage filter rules for your Simulink model.

• Attach and detach coverage filter files for your model.

• Navigate to the model to create additional coverage filter rules.

19-10

Manage Coverage Filter Rules Using the Coverage Filter Viewer

To ... Do this:

Navigate to the model to create
coverage filter rules.

Click Add new rule by
right-clicking in the model.

Navigate to a model object associated
with a rule. 1 Select the rule.

2 Click View in model.

Delete a rule.
1 Select the rule.

2 Click Remove rule.

Save the current rules to a file.
1 Enter a file name or browse to the
file.

2 Click Apply.

Attach the current filter file to the
model. 1 Clear the Attach file to model

check box.

2 Click Apply.

Detach the current filter file from
the model. 1 Click Attach file to model.

2 Click Apply.

Attach a new filter file to the model.
1 Click Browse.

2 Navigate to the desired filter file.

3 Click Open.

4 Click Attach file to model.

5 Click Apply.

Close the Coverage Viewer and save
the changes.

Click OK.

19-11

19 Excluding Model Objects From Coverage

Filter Model Objects to Refine Coverage Results

In this section...

“About the Example Model” on page 19-12

“Simulate Example Model and Review Coverage” on page 19-12

“Filter a Stateflow Transition” on page 19-13

“Filter a Stateflow Event” on page 19-15

“Filter Library Reference Blocks” on page 19-19

“Filter a Subsystem” on page 19-20

“Filter a Specific Block” on page 19-21

About the Example Model
In this example, when you simulate the slvnvdemo_covfilt model, the model
does not record 100% coverage. In subsequent steps, you filter certain objects
from recording coverage. These steps allow you to focus on specific parts of
the model to test for coverage.

The slvnvdemo_covfilt model is configured to record and report coverage
during simulation for the following coverage metrics:

• Decision coverage

• Condition coverage

• Modified condition/decision coverage (MCDC)

Simulate Example Model and Review Coverage
To identify areas of your model that do not record 100% coverage, simulate
the model and record coverage.

1 Open the example model:

slvnvdemo_covfilt

2 Select Simulation > Run.

19-12

Filter Model Objects to Refine Coverage Results

When the simulation is complete, an HTML coverage report opens. This
model does not record 100% coverage.

Filter a Stateflow Transition
In the Mode Logic Stateflow chart, the [!on] transition is never false because
it evaluates only when the [on] transition is false. If you do not collect
coverage for the [!on] transition, the chart behavior does not change, so
you should filter the [!on] transition.

1 Open the Mode Logic chart.

19-13

19 Excluding Model Objects From Coverage

2 Right-click the [!on] transition and select Coverage > Exclude this
transition.

The Coverage Filter Viewer opens with the new filter rule listed.

3 Click in the Rationale field and enter the reason for excluding this
transition, for example, This transition is never evaluated.

4 Save this rule to a filter file with the default name,
slvnvdemo_covfilt_covfilter.cvf. Click Apply.

If you are using this filter for the first time, the file is created in your
MATLAB Current Folder. You can specify a different file name and
location for your filter file.

5 Attach this filter file to the slvnvdemo_covfilt model. Click Attach file
to model and click Apply.

6 Click OK to close the Coverage Filter Viewer.

7 Simulate the model again and review the results in the coverage report.

Under Filtered Objects, the report lists the [!on] transition as filtered
from the coverage analysis.

19-14

Filter Model Objects to Refine Coverage Results

If you open the Mode Logic chart and click the transition, the Informer
window displays filtering information and the Rationale text.

Filter a Stateflow Event
Events in Stateflow are a common cause for missing coverage in a chart,
because they sometimes form an condition for coverage that can never be
satisfied.

For example, in the Mode Logic chart, the temporal event tick is never false,
as you can see from the coverage report.

19-15

19 Excluding Model Objects From Coverage

19-16

Filter Model Objects to Refine Coverage Results

As a result, you cannot record 100% condition and MCDC coverage for the
transition after(4, tick).

To filter the temporal event tick from coverage analysis for this model:

1 Open the Mode Logic chart.

2 Right-click the after(4, tick) transition and selectCoverage > Exclude
temporal event tick.

The Coverage Filter Viewer opens with the new filter rule listed.

3 Click in the Rationale field and enter explanatory text, for example, tick
is never false.

4 Select Attach file to model and click Apply to save this rule to the
current filter.

19-17

19 Excluding Model Objects From Coverage

Click OK to close the Coverage Filter Viewer.

5 Simulate the model again and review the results.

The Objects filtered from coverage analysis section of the report
lists the conditions of the event tick that are excluded, along with the
corresponding Rationale text you entered in the Coverage Filter Viewer.

19-18

Filter Model Objects to Refine Coverage Results

With the tick event filtered from coverage analysis, there is no longer a
subcondition on the decision for the after(4, tick) transition. There are
only two possible decision outcomes for the after(4, tick) transition.

Filter Library Reference Blocks
The slvnvdemo_covfilt model contains two instances of a library-linked
subsystem in the library slvnvdemo_covfilt_lib:

• protected division

• protected division1

The library subsystem is a protection against division by zero and might not
be relevant in the coverage report. Exclude it from coverage for this model.

1 In the Simulink Editor, right-click either of the protected division reference
blocks.

When you filter a library block, all instances of that block are filtered from
coverage.

19-19

19 Excluding Model Objects From Coverage

2 Select Coverage > Exclude reference library:
slvnvdemo_covfilt_lib/protected division.

The Coverage Filter Viewer opens with the new filter rule listed.

3 Click in the Rationale field for this new rule and enter text for excluding
this transition, for example, Protection against division by zero.

4 Save this rule to the current filter. Click Apply.

5 Simulate the model again and review the results.

The Filtered Blocks section of the report lists both protected division
reference blocks. No coverage is recorded for the two protected division
subsystems.

In the Simulink Editor, the blocks filtered from coverage are colored grey.

Filter a Subsystem
The slvnvdemo_covfilt model uses a Constant block to drive the enable port
for the Switchable config subsystem. Because the constant is always 0, this
subsystem never executes.

Exclude the Switchable config subsystem from coverage.

1 In the Simulink Editor, right-click the Switchable config subsystem.

19-20

Filter Model Objects to Refine Coverage Results

2 Select Coverage > Exclude subsystem with all descendants.

3 Click in the Rationale field for this new rule and enter text for excluding
this transition, for example, Never executed.

4 Save this rule to the current filter. Click Apply.

5 Simulate the model again and review the results.

The Filtered Blocks section of the report lists the Switchable config
subsystem. No coverage is recorded for the subsystem.

Filter a Specific Block
In the slvnvdemo_covfilt model, the rate signal can never be less than or
equal to 0, which is the value of the Lower limit parameter of the Saturation
block. This condition leads to missing coverage.

Exclude the Saturation block from coverage.

1 In the Simulink Editor, right-click the Saturation block.

2 Select Coverage > Exclude this block.

3 Click in the Rationale field for this new rule and enter text for excluding
this transition, for example, Input never <= lower limit (0).

4 Save this rule to the current filter. Click Apply.

5 Simulate the model again and review the results.

The Filtered Blocks section of the report lists the Saturation block.
Coverage for that block is omitted from the report.

19-21

19 Excluding Model Objects From Coverage

19-22

20

Automating Model
Coverage Tasks

• “Commands for Automating Model Coverage Tasks” on page 20-2

• “Create Tests with cvtest” on page 20-3

• “Run Tests with cvsim” on page 20-6

• “Retrieve Coverage Details from Results” on page 20-8

• “Obtain Cumulative Coverage for Reusable Subsystems and Stateflow
Constructs” on page 20-9

• “Create HTML Reports with cvhtml” on page 20-12

• “Save Test Runs to a File with cvsave” on page 20-13

• “Load Stored Coverage Test Results with cvload” on page 20-14

• “Use Coverage Commands in a Script” on page 20-15

20 Automating Model Coverage Tasks

Commands for Automating Model Coverage Tasks
Using model coverage commands lets you automate the entire model coverage
process with MATLAB scripts. You can use model coverage commands to set
up model coverage tests, execute them in simulation, and store and report
the results.

20-2

Create Tests with cvtest

Create Tests with cvtest

The cvtest command creates a test specification object. Once you create the
object, you simulate it with the cvsim command.

The call to cvtest has the following default syntax:

cvto = cvtest(root)

root is the name of, or a handle to, a Simulink model or a subsystem of
a model. cvto is a handle to the resulting test specification object. Only
the specified model or subsystem and its descendants are subject to model
coverage.

To create a test object with a specified label (used for reporting results):

cvto = cvtest(root, label)

To create a test with a setup command:

cvto = cvtest(root, label, setupcmd)

You execute the setup command in the base MATLAB workspace, just prior
to running the instrumented simulation. Use this command for loading data
prior to a test.

The returned cvtest object, cvto, has the following structure.

Field Description

id Read-only internal data-dictionary
ID

modelcov Read-only internal data-dictionary
ID

rootPath Name of the system or subsystem for
analysis

label String for reporting results

setupCmd Command executed prior to
simulation

20-3

20 Automating Model Coverage Tasks

Field Description

settings.condition Set to 1 for condition coverage

settings.decision Set to 1 for decision coverage

settings.
designverifier

Set to 1 for coverage for Simulink
Design Verifier blocks.

settings.mcdc Set to 1 for MCDC coverage

settings.overflowsaturation Set to 1 for saturate on integer
overflow coverage

settings.sigrange Set to 1 for signal range coverage

settings.sigsize Set to 1 for signal size coverage.

settings.tableExec Set to 1 for lookup table coverage

modelRefSettings.enable String specifying one of the following
values:

• Off — Disables coverage for all
referenced models

• all — Enables coverage for all
referenced models

• filtered— Enables coverage for
only referenced models not listed
in the excludedModels subfield

modelRefSettings.
excludeTopModel

Set to 1 for excluding coverage for
the top model

modelRefSettings.
excludedModels

String specifying a comma-separated
list of referenced models for
which coverage is disabled when
modelRefSettings.enable specifies
filtered

20-4

Create Tests with cvtest

Field Description

emlSettings.
enableExternal

Set to 1 to enable coverage for
external program files called by
MATLAB functions in your model

options.
forceBlockReduction

Set to 1 to override the Simulink
Block reduction parameter if it is
enabled.

20-5

20 Automating Model Coverage Tasks

Run Tests with cvsim

Use the cvsim command to simulate a test specification object.

The call to cvsim has the following default syntax:

cvdo = cvsim(cvto)

This command executes the cvtest object cvto by simulating the
corresponding model. cvsim returns the coverage results in the cvdata object
cvdo. When recording coverage for multiple models in a hierarchy, cvsim
returns its results in a cv.cvdatagroup object.

You can also control the simulation in a cvsim command by setting model
parameters for the Simulink sim command to apply during simulation:

• The following command executes the test object cvto and simulates the
model using the default model parameters. The cvsim function returns the
coverage results in the cvdata object cvdo and returns the simulation
outputs in a Simulink.SimulationOutput object simOut:

[cvdo,simOut] = cvsim(cvto)

• The following commands create a structure, paramStruct, that specifies
the model parameters to use during the simulation. The first command
specifies that the simulation collect decision, condition, and MCDC
coverage for this model.

paramStruct.CovMetricSettings = 'dcm';
paramStruct.SimulationMode = 'rapid';
paramStruct.AbsTol = '1e-5';
paramStruct.SaveState = 'on';
paramStruct.StateSaveName = 'xoutNew';
paramStruct.SaveOutput = 'on';
paramStruct.OutputSaveName = 'youtNew';

Note For a complete list of model parameters, see “Model Parameters” in
the Simulink documentation.

20-6

Run Tests with cvsim

The following cvsim command executes the test object cvto and simulates
the model using the model parameter values specified in paramStruct:

[cvdo,simOut] = cvsim(cvto,paramStruct);

You can also execute multiple test objects with the cvsim command. The
following command executes a set of coverage test objects, cvto1, cvto2,
... using the default simulation parameters. cvsim returns the coverage
results in a set of cvdata objects, cvdo1, cvdo2, ... and returns the
simulation outputs in simOut.

[cvdo1, cvdo2, ..., simOut] = cvsim(cvto1, cvto2, ...)

20-7

20 Automating Model Coverage Tasks

Retrieve Coverage Details from Results
Simulink Verification and Validation provides commands that allow you to
retrieve specific coverage information from the cvtest object after you have
simulated your model and recorded coverage. Use these commands to retrieve
the specified coverage information for a block, subsystem, or Stateflow chart
in your model or for the model itself:

• complexityinfo — Cyclomatic complexity coverage

• conditioninfo — Condition coverage

• decisioninfo — Decision coverage

• mcdcinfo— Modified condition/decision (MCDC) coverage

• overflowsaturationinfo— Saturate on integer overflow coverage

• sigrangeinfo — Signal range coverage

• sigsizeinfo — Signal size coverage

• tableinfo — Lookup Table block coverage

• getCoverageinfo— Coverage for Simulink Design Verifier blocks

The basic format of these functions is:

coverage = <coverage_type_prefix>info = (cvdata_object, ...
object, ignore_descendants)

• coverage— Multipart vector containing the retrieved coverage results for
object

• cvdata_object— cvdata object that you create when you call cvtest

• object — Handle to a model or object in the model

• ignore_descendants — Flag to ignore coverage results in subsystems,
referenced models, and Stateflow charts

20-8

Obtain Cumulative Coverage for Reusable Subsystems and Stateflow® Constructs

Obtain Cumulative Coverage for Reusable Subsystems
and Stateflow Constructs

Simulink Verification and Validation provides cumulative coverage for
multiple instances of identically configured:

• Reusable subsystems

• Stateflow constructs

To obtain cumulative coverage, you add the individual coverage results at the
command line. You can get cumulative coverage results for multiple instances
across models and test harnesses by adding the individual coverage results.

This example shows how to create and view cumulative coverage results for a
model with a reusable subsystem. At the MATLAB command line:

1 Type slvnvdemo_cv_mutual_exclusion. This model has two instances
of a reusable subsystem. The instances are named Subsystem 1 and
Subsystem 2.

2 Execute the commands for Subsystem 1 decision coverage:

testobj1 = cvtest([model '/Subsystem 1']);

testobj1.settings.decision = 1;

covobj1 = cvsim(testobj1);

3 Execute the commands for Subsystem 2 decision coverage:

testobj2 = cvtest([model '/Subsystem 2']);

testobj2.settings.decision = 1;

covobj2 = cvsim(testobj2);

4 Execute the command to create cumulative decision coverage for Subsystem
1 and Subsystem 2:

covobj3 = covobj1 + covobj2;

5 Create an HTML report for Subsystem 1 decision coverage:

cvhtml('subsystem1',covobj1)

20-9

20 Automating Model Coverage Tasks

The report indicates that decision coverage is 50% for Subsystem 1. The
true condition for enable logical value is not analyzed.

6 Create an HTML report for Subsystem 2 decision coverage:

cvhtml('subsystem2',covobj2)

The report indicates that decision coverage is 50% for Subsystem 2. The
false condition for enable logical value is not analyzed.

20-10

Obtain Cumulative Coverage for Reusable Subsystems and Stateflow® Constructs

7 Create an HTML report for cumulative decision coverage for Subsystem
1 and Subsystem 2:

cvhtml('cum_subsystem',covobj3)

Cumulative decision coverage for reusable subsystems Subsystem 1 and
Subsystem 2 is 100%. Both the true and false conditions for enable
logical value are analyzed.

20-11

20 Automating Model Coverage Tasks

Create HTML Reports with cvhtml

Once you run a test in simulation with cvsim, results are saved to
cv.cvdatagroup or cvdata objects in the base MATLAB workspace. Use the
cvhtml command to create an HTML report of these objects.

The following command creates an HTML report of the coverage results in
the cvdata object cvdo. The results are written to the file file in the current
MATLAB folder.

cvhtml(file, cvdo)

The following command creates a combined report of several cvdata objects:

cvhtml(file, cvdo1, cvdo2, ...)

The results from each object are displayed in a separate column of the HTML
report. Each cvdata object must correspond to the same root model or
subsystem, or the function produces errors.

You can specify the detail level of the report with the value of detail, an
integer between 0 and 3:

cvhtml(file, cvdo1, cvdo2,..., detail)

Higher numbers for detail indicate greater detail. The default value is 2.

20-12

Save Test Runs to a File with cvsave

Save Test Runs to a File with cvsave

Once you run a test with cvsim, save its coverage tests and results to a file
with the cvsave function:

cvsave(filename, model)

Save all the tests and results related to model in the text file filename.cvt:

cvsave(filename, cvto1, cvto2, ...)

Save the tests in the text file filename.cvt. Information about the referenced
models is also saved.

You can save specified cvdata objects to file. The following example saves
the tests, test results, and referenced models’ structure in cvdata objects to
the text file filename.cvt:

cvsave(filename, cvdo1, cvdo2, ...)

20-13

20 Automating Model Coverage Tasks

Load Stored Coverage Test Results with cvload

The cvload command loads into memory the coverage tests and results stored
in a file by the cvsave command. The following example loads the tests and
data stored in the text file filename.cvt:

[cvtos, cvdos] = cvload(filename)

The cvtest objects that are loaded are returned in cvtos, a cell array of
cvtest objects. The cvdata objects that are loaded are returned in cvdos,
a cell array of cvdata objects. cvdos has the same size as cvtos, but can
contain empty elements if a particular test has no results.

In the following example, if restoretotal is 1, the cumulative results from
prior runs are restored:

[cvtos, cvdos] = cvload(filename, restoretotal)

If restoretotal is unspecified or 0, the model’s cumulative results are
cleared.

cvload Special Considerations
When using the cvload command, be aware of the following considerations:

• When a model with the same name exists in the coverage database, only
the compatible results are loaded from the file. They reference the existing
model to prevent duplication.

• When the Simulink models referenced in the file are open but do not exist
in the coverage database, the coverage tool resolves the links to the models
that are already open.

• When you are loading several files that reference the same model, only the
results that are consistent with the earlier files are loaded.

20-14

Use Coverage Commands in a Script

Use Coverage Commands in a Script
The following script demonstrates some common model coverage commands.

This script:

• Creates two data files to load before simulation.

• Creates two cvtest objects, testObj1 and testObj2, and simulates them
using the default model parameters. Each cvtest object uses the setupCmd
property to load a data file before simulation.

• Enables decision, condition, and MCDC coverage.

• Retrieves the decision coverage results for the Adjustable Rate Limited
subsystem.

• Uses cvhtml to display the coverage results for the two tests and the
cumulative coverage.

• Compute cumulative coverage with the + operator and save the results

mdl = 'slvnvdemo_ratelim_harness';

mdl_subsys = 'slvnvdemo_ratelim_harness/Adjustable Rate Limiter';

open_system(mdl);

open_system(mdl_subsys);

t_gain = (0:0.02:2.0)'; u_gain = sin(2*pi*t_gain);

t_pos = [0;2]; u_pos = [1;1]; t_neg = [0;2]; u_neg = [-1;-1];

save('within_lim.mat','t_gain','u_gain','t_pos','u_pos', ...

't_neg', 'u_neg');

t_gain = [0;2]; u_gain = [0;4]; t_pos = [0;1;1;2];

u_pos = [1;1;5;5]*0.02; t_neg = [0;2]; u_neg = [0;0];

save('rising_gain.mat','t_gain','u_gain','t_pos','u_pos', ...

't_neg', 'u_neg');

testObj1 = cvtest(mdl_subsys);

testObj1.label = 'Gain within slew limits';

testObj1.setupCmd = 'load(''within_lim.mat'');';

testObj1.settings.mcdc = 1;

testObj1.settings.condition = 1;

20-15

20 Automating Model Coverage Tasks

testObj1.settings.decision = 1;

testObj2 = cvtest(mdl_subsys);

testObj2.label = 'Rising gain that temporarily exceeds slew limit';

testObj2.setupCmd = 'load(''rising_gain.mat'');';

testObj2.settings.mcdc = 1;

testObj2.settings.condition = 1;

testObj2.settings.decision = 1;

[dataObj1,simOut1] = cvsim(testObj1);

decision_cov1 = decisioninfo(dataObj1,mdl_subsys);

percent_cov1 = 100 * decision_cov1(1) / decision_cov1(2)

cc_cov2 = complexityinfo(dataObj1, mdl_subsys);

[dataObj2,simOut2] = cvsim(testObj2,[0 2]);

decision_cov2 = decisioninfo(dataObj2,mdl_subsys);

percent_cov2 = 100 * decision_cov2(1) / decision_cov2(2)

cc_cov2 = complexityinfo(dataObj1, mdl_subsys);

cvhtml('ratelim_report',dataObj1,dataObj2);

cumulative = dataObj1+dataObj2;

cvsave('ratelim_testdata',cumulative);

close_system('slvnvdemo_ratelim_harness',0);

20-16

Checking Systems with the
Model Advisor

• Chapter 21, “Checking Systems Interactively”

• Chapter 22, “Check Systems Programmatically”

21

Checking Systems
Interactively

• “About Checking Systems Interactively” on page 21-2

• “Limit the Scope of Model Advisor Analysis” on page 21-3

• “Limit Scope of Model Advisor Analysis By Excluding Gain and Outport
Blocks” on page 21-12

21 Checking Systems Interactively

About Checking Systems Interactively
Use the Model Advisor to check a Simulink model or subsystem for adherence
to modeling guidelines. Using MathWorks checks, you can easily apply
guidelines across projects and development teams. For more information, see
“Consult the Model Advisor” in the Simulink documentation.

The Model Advisor includes MathWorks checks that help you define and
implement consistent design guidelines. When you run the MathWorks
checks, the Model Advisor reviews your model for conditions and configuration
settings that cause inaccurate or inefficient simulation and code generation
of the system that the model represents. Depending on which products you
have installed, the Model Advisor displays different MathWorks checks .
For more information, see:

• “Simulink Checks”

• “Embedded Coder Checks”

• “Simulink Verification and Validation Checks”

• “Simulink Control Design Checks”

Software is inherently complex and may not be completely free of
errors. Model Advisor checks might contain bugs. MathWorks reports
known bugs brought to its attention on its Bug Report system at
http://www.mathworks.com/support/bugreports/. The bug reports are an
integral part of the documentation for each release. Examine periodically all
bug reports for a release as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described
in this documentation.

While applying Model Advisor checks to your model will increase the
likelihood that your model does not violate certain modeling standards
or guidelines, it is ultimately your responsibility to verify, using multiple
methods, that the system being developed provides its intended functionality
and does not include any unintended functionality.

21-2

http://www.mathworks.com/support/bugreports/

Limit the Scope of Model Advisor Analysis

Limit the Scope of Model Advisor Analysis

In this section...

“What Is a Model Advisor Exclusion?” on page 21-3

“Model Advisor Exclusion Files” on page 21-4

“Create Model Advisor Exclusions” on page 21-5

“Review Model Advisor Exclusions” on page 21-7

“Manage Exclusions” on page 21-8

What Is a Model Advisor Exclusion?
To save time during model development and verification, you might decide
to limit the scope of a Model Advisor analysis of your model. You can do this
by excluding individual blocks from checks. You create a Model Advisor
exclusion to exclude blocks in the model from selected checks. You can exclude
all or selected checks from:

• Simulink blocks

• Stateflow charts

After you specify the blocks to exclude, when you use the Model Advisor to
analyze your model, the software uses the exclusion information to exclude
blocks from specified checks during the analysis. A Model Advisor exclusion
file stores the block and check exclusion information.

You can also exclude blocks from checks that you write by using Model
Advisor APIs. For more information, see “Exclude Blocks From Custom
Checks” on page 24-55.

Note If you “Comment Out Blocks”, they are excluded from both simulation
and Model Advisor analysis.

21-3

21 Checking Systems Interactively

Model Advisor Exclusion Files
A Model Advisor exclusion file specifies a collection of blocks to exclude from
specified checks during a Model Advisor analysis.

To exclude blocks from specified checks during an analysis of your model, you
first create exclusions and save them in an exclusion file. You can also use an
existing Model Advisor exclusion file.

When you analyze a model with Model Advisor exclusions, the blocks in the
exclusion file are excluded from the specified checks during the analysis.
You can use an exclusion file with several models. However, a model can
have only one exclusion file.

Unless you specify a different folder, the Model Advisor saves exclusion
files in the current folder. The default name for an exclusion file is
<model_name>_exclusions.xml.

If you create an exclusion file and save your model, you attach the exclusion
file to your model. Each time that you open the model, the blocks and checks
specified in the exclusion file are excluded from the analysis.

In the Model Advisor Exclusion Editor dialog box, you can view each exclusion.
Each exclusion includes the information listed in the following table.

Field Description

Rationale A description of why this object is excluded from
Model Advisor checks.

Type Whether a specific block is excluded or all blocks
of a given type are excluded.

Value Name of block or blocks that are excluded.

Check ID (s) Names of checks for which the block exclusion
applies.

21-4

Limit the Scope of Model Advisor Analysis

Create Model Advisor Exclusions
You might want to exclude model blocks and checks from a Model Advisor
analysis to save time during model development and verification. To create
a Model Advisor exclusion:

1 In the model window, right-click a block and select Model Advisor. The
following table lists the possible menu options. The following table lists
what you can exclude and the corresponding menu options.

To ... Select Model Advisor > ...

Exclude the block from
all checks.

Exclude block only > All Checks

Exclude all blocks
of this type from all
checks.

Exclude all blocks with type
<block_type> > All Checks

Exclude the block from
selected checks.

• Exclude block only > Select Checks.

• In the Check Selector dialog box, select the
checks. Click OK.

Exclude all blocks of
this type from selected
checks.

• Exclude all blocks with type
<block_type> > Select Checks.

• In the Check Selector dialog box, select the
checks. Click OK.

Exclude the block from
all failed checks. This
option is available
after a Model Advisor
analysis.

Exclude block only > Only failed checks

Exclude all blocks of
this type from all failed
checks. This option is
available after a Model
Advisor analysis.

Exclude all blocks with type
<block_type> > Only failed checks

21-5

21 Checking Systems Interactively

To ... Select Model Advisor > ...

Exclude the block from
a failed check. This
option is available
after a Model Advisor
analysis.

Exclude block only > <name of failed
check>

Exclude all blocks of
this type from a failed
check. This option is
available after a Model
Advisor analysis.

Exclude all blocks with type
<block_type> > <name of failed check>

2 In the Model Advisor Exclusion Editor dialog box, click OK or Apply
to create the exclusion and save the information to an exclusion file. If
this exclusion is the first one, a Save Exclusion File as dialog box opens.
In this dialog box, click Save to create a exclusion file with the default
name <model_name>_exclusions.xml in the current folder. Optionally,
in the Save Exclusion File dialog box, you can select a different file name
or location.

3 If you want to change the exclusion file name or location:

a In the Model Advisor Exclusion Editor dialog box, select Change.

b In the Change Exclusion File dialog box, select Save as.

c In the Save Exclusion File dialog box, navigate to the location that you
want and enter a file name. Click Save.

d In the Model Advisor Exclusion Editor dialog box, select OK or Apply to
create the exclusion and save the information to an exclusion file.

You can create as many Model Advisor exclusions as you want by
right-clicking model blocks and selectingModel Advisor. Each time that you
create an exclusion, the Model Advisor Exclusion Editor dialog box opens. In
this dialog box, in the Rationale field, you can specify a reason for excluding
blocks or checks from the Model Advisor analysis. The rationale might be
useful to others who review your model.

21-6

Limit the Scope of Model Advisor Analysis

If you create an exclusion file and save your model, you attach the exclusion
file to your model. Each time that you open the model, the blocks and checks
specified in the exclusion file are excluded from the analysis.

Review Model Advisor Exclusions
You can review the exclusions associated with your model. After opening your
model, you might want to view the exclusions defined for your model by an
attached exclusion file.

To view exclusions information, either before or after an Model Advisor
analysis:

• Right-click in the model window or right-click a block and select Model
Advisor > Open Model Advisor Exclusion Editor. The Model Advisor
Exclusion Editor dialog box lists the exclusions for your model.

• On the model window toolbar, select Settings > Preferences. In the
Model Advisor Preferences dialog box, select Show Exclusion tab . In the
right pane of the Model Advisor window, select the Exclusions tab to
display checks that are excluded from the Model Advisor analysis.

• In the model window, select Analysis > Model Advisor > Model Advisor
to launch the Model Advisor.

1 On the Model Advisor window toolbar, selectHighlighting > Highlight
Exclusions. By default, this menu option is selected.

2 In the Model Advisor window, click the Enable Model Advisor
highlighting toggle button ().

3 In the left pane of the Model Advisor window, select a check. The blocks
excluded from the check appear in the model window, highlighted in
gray with a black border.

After the Model Advisor completes an analysis, you can view exclusion
information for individual checks in the:

• HTML report. In the Model Advisor window, make sure select the Show
report after run check box before the analysis.

21-7

21 Checking Systems Interactively

• Model Advisor window. In the left pane of the Model Advisor window,
select By Product > Simulink > < name of check >. If the By Product
folder is not displayed, select Show By Product Folder from the
Settings > Preferences dialog box.

If the check ... The HTML report and Model Advisor window
...

Has no exclusions
rules applied.

State that no exclusions were applied to this check.
This might happen if you exclude a block from a
check that passes without an exclusion.

Does not support
exclusions.

State that the check does not support exclusions.
This might happen if you exclude a block from a
check that does not support exclusions.

Is excluded from a
block.

Lists the check exclusion rules.

Manage Exclusions

• “Save Exclusions To a File” on page 21-9

• “Load an Exclusion File” on page 21-10

• “Detach an Exclusion File” on page 21-10

• “Remove an Exclusion” on page 21-10

• “Add a Rational to an Exclusion” on page 21-10

To open the Model Advisor Exclusion Editor dialog box, either right-click in
the model window or right-click a block and select Model Advisor > Open
Model Advisor Exclusion Editor.

21-8

Limit the Scope of Model Advisor Analysis

Note The Rationale field is the only field that you can edit in the Model
Advisor Exclusion Editor.

Save Exclusions To a File
To save an exclusion to a file:

1 In the Model Advisor Exclusion Editor dialog box, click OK or Apply. If
this exclusion is the first one, a Save Exclusion File as dialog box opens.
In this dialog box, click Save to create an exclusion file with the default
name <model_name>_exclusions.xml in the current folder. Optionally,
in the Save Exclusion File dialog box, you can select a different file name
or location.

2 If you want to change the exclusion file name or location:

a In the Model Advisor Exclusion Editor dialog box, select Change.

b In the Change Exclusion File dialog box, select Save as.

c In the Save Exclusion File dialog box, navigate to the location that you
want and enter a file name. Click Save.

d In the Model Advisor Exclusion Editor dialog box, select OK or Apply to
create the exclusion and save the information to an exclusion file.

21-9

21 Checking Systems Interactively

Load an Exclusion File
To load an existing exclusion file for use with your model:

1 In the Model Advisor Exclusion Editor dialog box, click Change.

2 In the Change Exclusion File Dialog box, click Load.

3 Navigate to the exclusion file that you want to use with your model. Select
Open.

4 In the Model Advisor Exclusion Editor dialog box, click OK to associate
the exclusion file with your model.

Detach an Exclusion File
To detach an exclusion file associated with your model:

1 In the Model Advisor Exclusion Editor dialog box, click Change.

2 In the Change Exclusion File Dialog box, click Detach.

3 In the Model Advisor Exclusion Editor dialog box, click OK to detach the
exclusion file from your model.

Remove an Exclusion
To remove an exclusion:

1 In the Model Advisor Exclusion Editor dialog box, double-click the
Rationale field for the exclusion.

2 Delete the existing text.

3 Add the rationale for excluding this object.

Add a Rational to an Exclusion
You can add text that describes why you excluded a particular block or blocks
from selected checks during Model Advisor analysis. A description might be
useful to others who review your model.

21-10

Limit the Scope of Model Advisor Analysis

1 In the Model Advisor Exclusion Editor dialog box, select the exclusions that
you want to remove.

2 Click Remove Exclusion.

21-11

21 Checking Systems Interactively

Limit Scope of Model Advisor Analysis By Excluding Gain
and Outport Blocks

This example shows how to exclude a gain block and all outport blocks
from a Model Advisor check during a Model Advisor analysis. By excluding
individual blocks from checks, you limit the scope of the analysis and might
save time during model development and verification.

1 At the MATLAB command line, type sldemo_mdladv.

2 From the model window, select Analysis > Model Advisor > Model
Advisor to open the Model Advisor.

3 A System Selector — Model Advisor dialog box opens. Click OK.

4 If the By Product folder is not displayed in the Model Advisor window,
select Show By Product Folder from the Settings > Preferences dialog
box.

5 In the left pane of the Model Advisor window, expand By Product >
Simulink. Select the Show report after run check box to see an HTML
report of check results after you run the checks.

6 Run the selected checks by clicking the Run Selected Checks button.
After the Model Advisor runs the checks, an HTML report displays the
check results in a browser window. The check Identify unconnected
lines, input ports, and output ports triggers a warning.

7 In the left pane of the Model Advisor window, select the check By Product
> Simulink > Identify unconnected lines, input ports, and output
ports.

8 In the Model Advisor window, click the Enable Model Advisor
highlighting button ().

• The model window opens. The blocks causing the Identify
unconnected lines, input ports, and output ports check warning
are highlighted in yellow.

21-12

Limit Scope of Model Advisor Analysis By Excluding Gain and Outport Blocks

• The Model Advisor Highlighting window opens with a link to the Model
Advisor window. In the Model Advisor window, you can find more
information about the check results and how to fix the warning condition.

9 After reviewing the check results, exclude the Gain2 block from all Model
Advisor checks:

a In the model window, right-click the Gain2 block and select Model
Advisor > Exclude block only > All Checks.

b In the Model Advisor Exclusion Editor dialog box, double-click in the
first row of the Rationale field, and enter Exclude gain block.

21-13

21 Checking Systems Interactively

c Click OK to create the exclusion file.

d In the Save Exclusion File as dialog box, click Save to create a exclusion
file with the default name sldemo_mdladv_exclusions.

10 After reviewing the check results, exclude all Outport blocks from the
Identify unconnected lines, input ports, and output ports check:

a In the model window, right-click the Out4 block and select Model
Advisor > Exclude all blocks of type Outport > Select checks.

b In the Check Selector dialog box, scroll down and select Identify
unconnected lines, input ports, and output ports. Click OK.

21-14

Limit Scope of Model Advisor Analysis By Excluding Gain and Outport Blocks

Alternately, to exclude all Outport blocks from the Identify unconnected
lines, input ports, and output ports check, right-click the Out4
block and select Model Advisor > Exclude all blocks of type
Outport > Identify unconnected lines, input ports, and output
ports.

c In the Model Advisor Exclusion Editor dialog box, click OK to also
exclude all Outport blocks from the Identify unconnected lines, input
ports, and output ports check. The sldemo_mdladv_exclusions file is
updated with the Outport block exclusions.

11 In the left pane of the Model Advisor window, select By
Product > Simulink and then:

• Select the Show report after run check box.

• Select Run Selected Checks to run a Model Advisor analysis.

12 After the Model Advisor completes the analysis, you can view exclusion
information for the Identify unconnected lines, input ports, and output
ports check in the:

• HTML report:

21-15

21 Checking Systems Interactively

• Model Advisor window. In the left pane of the Model Advisor window,
select By Product > Simulink > Identify unconnected lines, input
ports, and output ports.

• Model window. In the left pane of the Model Advisor window, select
By Product > Simulink > Identify unconnected lines, input
ports, and output ports. Then click the Enable Model Advisor
highlighting button ().

21-16

Limit Scope of Model Advisor Analysis By Excluding Gain and Outport Blocks

13 Close sldemo_mdladv.

Related
Examples

• “Run Model Advisor Checks”

Concepts • “Consult the Model Advisor”
• “Highlight Model Advisor Analysis Results”

21-17

21 Checking Systems Interactively

21-18

22

Check Systems
Programmatically

• “Overview” on page 22-2

• “Workflow for Checking Systems Programmatically” on page 22-3

• “Finding Check IDs” on page 22-4

• “Create a Function for Checking Multiple Systems” on page 22-6

• “Check Multiple Systems in Parallel” on page 22-8

• “Create a Function for Checking Multiple Systems in Parallel” on page 22-9

• “Archive and View Results” on page 22-11

• “Archive and View Model Advisor Run Results” on page 22-15

22 Check Systems Programmatically

Overview
The Simulink Verification and Validation product includes a programmable
interface for scripting and for command-line interaction with the Model
Advisor. Using this interface, you can:

• Create scripts and functions for distribution that check one or more
systems using the Model Advisor.

• Run the Model Advisor on multiple systems in parallel on multicore
machines (requires a Parallel Computing Toolbox™ license).

• Check one or more systems using the Model Advisor from the command line.

• Archive results for reviewing at a later time.

22-2

Workflow for Checking Systems Programmatically

Workflow for Checking Systems Programmatically
To define the workflow for running multiple checks on systems:

1 Specify a list of checks to run. Do one of the following:

• Create a Model Advisor configuration file that includes only the checks
that you want to run. For more information, see “Organize Checks and
Folders Using the Model Advisor Configuration Editor” on page 25-3.

• Create a list of check IDs. For more information on finding check IDs,
see “Finding Check IDs” on page 22-4.

2 Specify a list of systems to check.

3 Run the Model Advisor checks on the list of systems using the
ModelAdvisor.run function.

4 Archive and review the results of the run. For details, see “Archive and
View Results” on page 22-11.

22-3

22 Check Systems Programmatically

Finding Check IDs
An ID is a unique string that identifies a Model Advisor check. You find check
IDs in the Model Advisor, using check context menus.

To Find... Do This...

Check Title, ID, or
location of the MATLAB
source code

1 On the model window toolbar, select Settings > Preferences.

2 In the Model Advisor Preferences dialog box, select Show Source
Tab.

3 In the right pane of the Model Advisor window, click the Source
tab. The Model Advisor window displays the check Title, TitleId,
and location of the MATLAB source code for the check.

Check ID
1 In the left pane of the Model Advisor, select the check.

2 Right-click the check name and select Send Check ID to
Workspace. The ID is displayed in the Command Window and
sent to the base workspace.

Check IDs for selected
checks in a folder 1 In the left pane of the Model Advisor, select the checks for which

you want IDs. Clear the other checks in the folder.

2 Right-click the folder and select Send Check ID to Workspace.
An array of the selected check IDs are sent to the base workspace.

If you know a check ID from a previous release, you can find the current check
ID using the ModelAdvisor.lookupCheckID function. For example, the check
ID for By Product > Simulink Verification and Validation > Modeling
Standards > DO-178C/DO-331 Checks > Check safety-related
optimization settings prior to Release 2010b was DO178B:OptionSet.
Using the ModelAdvisor.lookupCheckID function returns:

>> NewID = ModelAdvisor.lookupCheckID('DO178B:OptionSet')

NewID =

22-4

Finding Check IDs

mathworks.do178.OptionSet

Note If the By Product folder is not displayed in the Model Advisor window,
select Show By Product Folder from the Settings > Preferences dialog
box.

22-5

22 Check Systems Programmatically

Create a Function for Checking Multiple Systems
The following tutorial guides you through creating and testing a function
to run multiple checks on any model. The function returns the number of
failures and warnings.

1 In the MATLAB window, select New > Function.

2 Save the function as run_configuration.m.

3 In the MATLAB Editor, specify [output_args] as [fail, warn].

4 Rename the function run_configuration.

5 Specify input_args to SysList.

6 Inside the function, specify the list of checks to run using the example
Model Advisor configuration file:

fileName = 'slvnvdemo_mdladv_config.mat';

7 Call the ModelAdvisor.run function:

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

8 Determine the number of checks that return warnings and failures:

fail=0;

warn=0;

for i=1:length(SysResultObjArray)

fail = fail + SysResultObjArray{i}.numFail;

warn = warn + SysResultObjArray{i}.numWarn;

end

The function should now look like this:

function [fail, warn] = run_configuration(SysList)

%RUN_CONFIGURATION Check systems with Model Advsior

% Check systems given as input and return number of warnings and

% failures.

22-6

Create a Function for Checking Multiple Systems

fileName = 'slvnvdemo_mdladv_config.mat';

fail=0;

warn=0;

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

for i=1:length(SysResultObjArray)

fail = fail + SysResultObjArray{i}.numFail;

warn = warn + SysResultObjArray{i}.numWarn;

end

end

9 Save the function.

10 Test the function. In the MATLAB Command Window, run
run_configuration.m on the sldemo_auto_climatecontrol/Heater
Control subsystem:

[failures, warnings] = run_configuration(...

'sldemo_auto_climatecontrol/Heater Control');

11 Review the results. Click the Summary Report link to open the Model
Advisor Command-Line Summary report.

22-7

22 Check Systems Programmatically

Check Multiple Systems in Parallel
Checking multiple systems in parallel reduces the processing time required
by the Model Advisor to check multiple systems. If you have a Parallel
Computing Toolbox license, you can check multiple systems in parallel on a
multicore host machine.

22-8

Create a Function for Checking Multiple Systems in Parallel

Create a Function for Checking Multiple Systems in Parallel
If you have a Parallel Computing Toolbox license and a multicore host
machine, you can create the following function to check multiple systems in
parallel:

1 Create the run_configuration function as described in “Create a Function
for Checking Multiple Systems” on page 22-6.

2 Save the function as run_fast_configuration.m.

3 In the Editor, change the name of the function to run_fast_configuration.

4 Add another input to the run_fast_configuration function so that the
inputs are now:

SysList, numParallel

5 In the run_fast_configuration function, before calling the
ModelAdvisor.run function, add a call to the matlabpool function that
evaluates the number of cores to use:

eval(['matlabpool open ' num2str(numParallel)]);

6 At the end of the run_fast_configuration function, add a call to close the
matlabpool function:

matlabpool close;

The function should now look like this:

function [fail, warn] = run_fast_configuration(SysList, numParallel)

%RUN_FAST_CONFIGURATION Check systems in parallel with Model Advisor

% Check systems given as input in parallel on the number of cores

% specified as input. Return number of warnings and failures.

fileName = 'slvnvdemo_mdladv_config.mat';

fail=0;

warn=0;

eval(['matlabpool open ' num2str(numParallel)]);

SysResultObjArray = ModelAdvisor.run(SysList,'Configuration',fileName);

22-9

22 Check Systems Programmatically

for i=1:length(SysResultObjArray)

fail = fail + SysResultObjArray{i}.numFail;

warn = warn + SysResultObjArray{i}.numWarn;

end

matlabpool close

end

7 Save the function.

8 Test the function. In the MATLAB Command Window, create a list of
systems:

SysList={'sldemo_auto_climatecontrol/Heater Control',...

'sldemo_auto_climatecontrol/AC Control', 'rtwdemo_iec61508'};

9 Run run_fast_configuration on the list of systems, specifying
numParallel to be the number of cores in your system. For example, the
following command specifies two cores:

% Run on 2 cores

[failures, warnings] = run_fast_configuration(SysList, 2);

10 Review the results. Click the Summary Report link to open the Model
Advisor Command-Line Summary report.

22-10

Archive and View Results

Archive and View Results
You can archive and view the results of running the Model Advisor
programmatically as described in the following sections:

In this section...

“Archive Results” on page 22-11

“View Results in Command Window” on page 22-11

“View Results in Model Advisor Command-Line Summary Report” on page
22-13

“View Results in Model Advisor GUI” on page 22-14

“View Model Advisor Report” on page 22-14

Archive Results
After you run the Model Advisor programmatically, you can archive the
results for use at another time. The ModelAdvisor.run function returns a
cell array of ModelAdvisor.SystemResult objects, one for each system run.
If you save the objects, you can use them to view the results at a later time
without rerunning the Model Advisor. For details, see “Understanding the
Save and Load Process”.

For an example of archiving results, see “Archive and View Model Advisor
Run Results” on page 22-15.

View Results in Command Window
When you run the Model Advisor programmatically, the system-level results
of the run are displayed in the Command Window. For example, when you
run the function that you created in “Create a Function for Checking Multiple
Systems” on page 22-6, the following results are displayed:

Systems passed: 0 of 1

Systems with warnings: 1 of 1

Systems failed: 0 of 1

Summary Report

22-11

22 Check Systems Programmatically

The Summary Report link provides access to the Model Advisor
Command-Line Summary report (see “View Results in Model Advisor
Command-Line Summary Report” on page 22-13).

You can review additional results in the Command Window by calling the
DisplayResults parameter when you run the Model Advisor. For example,
run the Model Advisor as follows:

SysResultObjArray = ModelAdvisor.run('sldemo_auto_climatecontrol/Heater Control',...

'Configuration','slvnvdemo_mdladv_config.mat','DisplayResults','Details');

The results displayed in the Command Window are:

Running Model Advisor

Running Model Advisor on sldemo_auto_climatecontrol/Heater Control

==

Model Advisor run: 29-Oct-2012 16:30:00

Configuration: slvnvdemo_mdladv_config.mat

System: sldemo_auto_climatecontrol/Heater Control

System version: 8.1

Created by: The MathWorks Inc.

==

(1) Warning: Check model diagnostic parameters [check ID: mathworks.maab.jc_0021]

--

(2) Warning: Check for fully defined interface [check ID: mathworks.iec61508.RootLevelInports]

--

(3) Pass: Check for unconnected objects [check ID: mathworks.iec61508.UnconnectedObjects]

--

(4) Pass: Check for blocks not recommended for C/C++ production code deployment

[check ID: mathworks.iec61508.PCGSupport]

--

Summary: Pass Warning Fail Not Run

2 2 0 0

==

Systems passed: 0 of 1

Systems with warnings: 1 of 1

Systems failed: 0 of 1

22-12

Archive and View Results

Summary Report

To display the results in the Command Window after loading an object, use
the viewReport function.

View Results in Model Advisor Command-Line
Summary Report
When you run the Model Advisor programmatically, a Summary Report link
is displayed in the Command Window. Clicking this link opens the Model
Advisor Command-Line Summary report. The following graphic is the report
that the Model Advisor generates for run_configuration.

To view the Model Advisor Command-Line Summary report after loading an
object, use the ModelAdvisor.summaryReport function.

22-13

22 Check Systems Programmatically

View Results in Model Advisor GUI
In the Model Advisor window, you can view the results of running the
Model Advisor programmatically using the viewReport function. In the
Model Advisor window, you can review results, run checks, fix warnings and
failures, and view and save Model Advisor reports. For more information, see
“Consult the Model Advisor”.

Tip To fix warnings and failures, you must rerun the check in the Model
Advisor window.

View Model Advisor Report
For a single system or check, you can view the same Model Advisor report
that you access from the Model Advisor GUI.

To view the Model Advisor report for a system:

• Open the Model Advisor Command-Line Summary report. In the Systems
Run table, click the link for the Model Advisor report.

• Use the viewReport function.

To view individual check results:

• In the Command Window, generate a detailed report using the viewReport
function with the DisplayResults parameter set to Details, and then
click the Pass, Warning, or Fail link for the check. The Model Advisor
report for the check opens.

• Use the view function.

22-14

Archive and View Model Advisor Run Results

Archive and View Model Advisor Run Results
The following example guides you through archiving the results of running
checks so that you can review them at a later time. To simulate archiving
and reviewing, the steps in the tutorial detail how to save the results, clear
out the MATLAB workspace (simulates shutting down MATLAB), and then
load and review the results.

1 Call the ModelAdvisor.run function:

SysResultObjArray = ModelAdvisor.run({'sldemo_auto_climatecontrol/Heater Control'},...

'Configuration','slvnvdemo_mdladv_config.mat');

2 Save the SystResulObj for use at a later time:

save my_model_advisor_run SysResultObjArray

3 Clear the workspace to simulate viewing the results at a different time:

clear

4 Load the results of the Model Advisor run:

load my_model_advisor_run SysResultObjArray

5 View the results in the Model Advisor:

viewReport(SysResultObjArray{1},'MA')

22-15

22 Check Systems Programmatically

22-16

Customizing the Model Advisor

• Chapter 23, “Overview of Customizing the Model Advisor”

• Chapter 24, “Authoring Custom Checks”

• Chapter 25, “Create Custom Configurations by Organizing Checks
and Folders”

• Chapter 26, “Create Procedural-Based Model Advisor Configurations”

• Chapter 27, “Deploy Custom Configurations”

23

Overview of Customizing
the Model Advisor

• “Model Advisor Customization” on page 23-2

• “Create Custom Configurations” on page 23-4

• “Requirements for Customizing the Model Advisor” on page 23-6

23 Overview of Customizing the Model Advisor

Model Advisor Customization
Using Model Advisor APIs and the Model Advisor Configuration Editor, you
can:

• Define your own custom checks and write your own callback functions.

• Create custom configurations by organizing checks and folders.

• Specify the order in which you make changes to your model by creating
a procedural-based configuration.

• Create multiple custom configurations for different projects or modeling
guidelines, and switch between these configurations in the Model Advisor.

• Deploy the custom configurations to your users.

For more information about the Model Advisor, see “Consult the Model
Advisor”.

If you want to... Follow workflow... For more
information, see...

Author custom checks. “Author Checks
Workflow” on page
24-2

“Authoring Checks”

Create custom
configurations to
organize the checks
MathWorks provides.

“Create Configurations
by Organizing Checks
and Folders Workflow”
on page 23-4

“Organizing and
Deploying Checks”

Use custom checks
to create a custom
configuration.

“Create Configurations
by Organizing Checks
and Folders Workflow”
on page 23-4

“Organizing and
Deploying Checks”

Specify the order
in which you make
changes to your model.

“Create
Procedural-Based
Configurations ” on
page 23-5

“Overview of
Procedural-Based
Model Advisor
Configurations” on
page 26-2

23-2

Model Advisor Customization

If you want to... Follow workflow... For more
information, see...

Deploy the custom
configurations to your
users.

“Deploying Custom
Configurations
Workflow” on page
27-2

“Organizing and
Deploying Checks”

Verify that models
comply with modeling
guidelines.

“Consult the Model
Advisor”

23-3

23 Overview of Customizing the Model Advisor

Create Custom Configurations

In this section...

“Create Configurations by Organizing Checks and Folders Workflow” on
page 23-4

“Create Procedural-Based Configurations ” on page 23-5

Create Configurations by Organizing Checks and
Folders Workflow
To customize the Model Advisor with MathWorks and custom checks, perform
the following tasks:

1 Review the information in “Requirements for Customizing the Model
Advisor” on page 23-6.

2 Optionally, author custom checks in a customization file. See “Authoring
Checks”.

3 Organize the checks into new and existing folders to create custom
configurations. See “Organizing and Deploying Checks”.

a Identify which checks you want to include in your custom Model Advisor
configuration. You can use MathWorks checks and/or custom checks.

b Create the custom configurations using either of the following:

• Model Advisor Configuration Editor - “Organize Checks and Folders
Using the Model Advisor Configuration Editor” on page 25-3.

• A customization file - “Organize Checks and Folders Within a
Customization File” on page 25-11.

For information on whether to use the Model Advisor configuration editor
or a customization file, see “Using the Model Advisor Configuration
Editor Versus Customization File” on page 25-2.

c Verify the custom configuration. See “Verify and Use Custom
Configurations” on page 25-21.

4 Optionally, deploy the custom configurations to your users. See “Organizing
and Deploying Checks”.

23-4

Create Custom Configurations

5 Verify that models comply with modeling guidelines. See “Consult the
Model Advisor”.

Create Procedural-Based Configurations
To create a procedural-based configuration, perform the following tasks:

1 Review the information in “Requirements for Customizing the Model
Advisor” on page 23-6.

2 Decide on order of changes to your model.

3 Identify checks that provide information about the modifications you want
to make to your model. For example, if you want to modify your model
optimization settings, the Check optimization settings check provides
information about the settings. You can use custom checks and checks
provided by MathWorks.

4 Optionally, author custom checks in a customization file. See “Authoring
Checks”.

5 Organize the checks into procedures for a procedural-based configuration.
See “Overview of Procedural-Based Model Advisor Configurations” on page
26-2.

a Create procedures using the procedure API. For detailed information,
see “Create Procedures Using the Procedures API” on page 26-3.

b Create the custom configuration by using a customization file. See
“Organize Checks and Folders Within a Customization File” on page
25-11.

c Verify the custom configuration as described in “Verify and Use Custom
Configurations” on page 25-21.

6 Optionally, deploy the custom configurations to your users. For detailed
information, see “Organizing and Deploying Checks”.

7 Verify that models comply with modeling guidelines. For detailed
information, see “Consult the Model Advisor”.

23-5

23 Overview of Customizing the Model Advisor

Requirements for Customizing the Model Advisor
Before customizing the Model Advisor:

• If you want to create custom checks, know how to create a MATLAB script.
For more information, see “Create Scripts” in the MATLAB documentation.

• Understand how to access model constructs that you want to check.
For example, know how to find block and model parameters. For more
information on using utilities for creating check callbacks, see “Common
Utilities for Authoring Checks” on page 24-35.

23-6

24

Authoring Custom Checks

• “Author Checks Workflow” on page 24-2

• “Customization File Overview” on page 24-3

• “Quick Start Examples” on page 24-6

• “Register Checks and Process Callbacks” on page 24-18

• “Define Custom Checks” on page 24-23

• “Create Callback Functions and Results” on page 24-34

• “Exclude Blocks From Custom Checks” on page 24-55

24 Authoring Custom Checks

Author Checks Workflow
1 On your MATLAB path, create a customization file named
sl_customization.m. In this file, create a sl_customization() function
to register the custom checks that you create and optional process callbacks
with the Model Advisor. For detailed information, see “Register Checks and
Process Callbacks” on page 24-18.

2 Define custom checks and where they appear in the Model Advisor. For
detailed information, see “Define Custom Checks” on page 24-23.

3 Specify what actions you want the Model Advisor to take for the custom
checks by creating a check callback function for each custom check. For
detailed information, see “Create Callback Functions and Results” on
page 24-34.

4 Optionally, specify what automatic fix operations the Model Advisor
performs by creating an action callback function. For detailed information,
see “Action Callback Function” on page 24-49.

5 Optionally, specify startup and post-execution actions by creating a process
callback function. For detailed information, see “Define Startup and
Post-Execution Actions Using Process Callback Functions” on page 24-20.

24-2

Customization File Overview

Customization File Overview
A customization file is a MATLAB file that you create and name
sl_customization.m. The sl_customization.m file contains a set of
functions for registering and defining custom checks, tasks, and groups. To
set up the sl_customization.m file, follow the guidelines in this table.

Function Description When Required

sl_customization() Registers custom checks,
tasks, folders, and
callbacks with the Simulink
customization manager at
startup (see “Register Checks
and Process Callbacks” on
page 24-18).

Required for customizations to
the Model Advisor.

One or more check definitions Defines custom checks (see
“Define Custom Checks” on
page 24-23).

Required for custom checks
and to add custom checks
to the By Product folder.If
the By Product folder is
not displayed in the Model
Advisor window, select Show
By Product Folder from
the Settings > Preferences
dialog box.

Check callback functions Defines the actions of the
custom checks (see “Create
Callback Functions and
Results” on page 24-34).

Required for custom checks.
You must write one callback
function for each custom
check.

One or more calls to check
input parameters

Specifies input parameters to
custom checks (see “Define
Check Input Parameters” on
page 24-28).

Optional.

One or more calls to check list
views

Specifies calls to the Model
Advisor Result Explorer for
custom checks (see “Define
Model Advisor Result Explorer
Views” on page 24-30).

Optional.

24-3

24 Authoring Custom Checks

Function Description When Required

One or more calls to check
actions

Specifies actions the software
performs for custom checks
(see “Define Check Actions”
on page 24-31 and “Action
Callback Function” on page
24-49).

Optional.

One process callback function Specifies actions to be
performed at startup
and post-execution time
(see “Define Startup and
Post-Execution Actions Using
Process Callback Functions”
on page 24-20).

Optional.

The following is an example of a custom configuration of the Model Advisor
that has custom checks defined in custom folders and procedures. The
selected check includes input parameters, list view parameters, and actions.

24-4

Customization File Overview

24-5

24 Authoring Custom Checks

Quick Start Examples

In this section...

“Add Customized Check to By Product Folder” on page 24-6

“Create Customized Pass/Fail Check” on page 24-8

“Create Customized Pass/Fail Check with Fix Action” on page 24-12

Add Customized Check to By Product Folder
The following example shows how to add a customized check to a Model
Advisor By Product > Demo subfolder. In this example, the customized
check does not check model elements.

1 In your working directory, create the sl_customization.m file, as shown
below. This file registers and creates the check registration function
defineModelAdvisorChecks, which in turn registers the check callback
function SimpleCallback. The function defineModelAdvisorChecks uses
a ModelAdvisor.Root object to define the check interface.

function sl_customization(cm)

% --- register custom checks

cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function

function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck');

rec.Title = 'Example of a customized check';

rec.TitleTips = 'Added customized check to Product Folder';

rec.setCallbackFcn(@SimpleCallback,'None','StyleOne');

mdladvRoot.publish(rec, 'Demo');

% --- creates SimpleCallback function

function result = SimpleCallback(system);

result={};

2 Close the Model Advisor and your model if either are open.

24-6

Quick Start Examples

3 In the MATLAB Command Window, enter:

sl_refresh_customizations

4 From the MATLAB window, select New > Model to open a new Simulink
model window.

5 From the model window, select Analysis > Model Advisor > Model
Advisor to open the Model Advisor.

6 A System Selector — Model Advisor dialog box opens. Click OK. The
Model Advisor window opens. It might take a few minutes.

7 If the By Product folder is not displayed in the Model Advisor window,
select Show By Product Folder from the Settings > Preferences dialog
box.

8 In the left pane, expand the By Product folder to display the subfolders.

The customized check Example of a customized check appears in the
By Product > Demo subfolder.

24-7

24 Authoring Custom Checks

See Also

• “Register Checks and Process Callbacks” on page 24-18

Create Customized Pass/Fail Check
The following example shows how to create a Model Advisor pass/fail check.
In this example, the Model Advisor checks Constant blocks. If a Constant
blocks value is numeric, the check fails.

1 In your working directory, update the sl_customization.m file, as shown
below. This file registers and creates the check registration function
defineModelAdvisorChecks, which also registers the check callback
function SimpleCallback. The function SimpleCallback creates a check
that finds Constant blocks that have numeric values. SimpleCallback uses
the Model Advisor format template.

function sl_customization(cm)

% --- register custom checks

cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function

function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck');

rec.Title = 'Check Constant block usage';

rec.TitleTips = ['Fail if Constant block value is a number; Pass if' ...

' Constant block value is a letter'];

rec.setCallbackFcn(@SimpleCallback,'None','StyleOne')

mdladvRoot.publish(rec, 'Demo');

% --- SimpleCallback function that checks constant blocks

function result = SimpleCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

result = {};

all_constant_blk=find_system(system,'LookUnderMasks','all',...

'FollowLinks','on','BlockType','Constant');

blk_with_value=find_system(all_constant_blk,'RegExp','On','Value','^[0-9]');

24-8

Quick Start Examples

ft = ModelAdvisor.FormatTemplate('ListTemplate');

ft.setInformation(['This check looks for constant blocks that'...

'use numeric values']);

if ~isempty(blk_with_value)

ft.setSubResultStatusText(['Check has failed. The following '...

'Constant blocks have numeric values:']);

ft.setListObj(blk_with_value);

ft.setSubResultStatus('warn');

ft.setRecAction('Parameterize the constant block');

mdladvObj.setCheckResultStatus(false);

else

ft.setSubResultStatusText(['Check has passed. No constant blocks'...

' with numeric values were found.']);

ft.setSubResultStatus('pass');

mdladvObj.setCheckResultStatus(true);

end

ft.setSubBar(0);

result{end+1} = ft;

2 Close the Model Advisor and your model if either are open.

3 It the MATLAB Command Window, enter:

sl_refresh_customizations

4 From the MATLAB window, select New > Model to open a new Simulink
model window.

5 In the Simulink model window, create two Constant blocks named
Const_One and Const_1:

• Right-click the Const_One block, choose Constant Parameters, and
assign a Constant value of one.

• Right-click the Const_1 block, choose Constant Parameters, and
assign a Constant value of 1.

• Save your model as example2_qs

24-9

24 Authoring Custom Checks

6 From the model window, select Analysis > Model Advisor > Model
Advisor to open the Model Advisor.

7 A System Selector — Model Advisor dialog box opens. Click OK. The
Model Advisor window opens. It might take a few minutes.

8 If the By Product folder is not displayed in the Model Advisor window,
select Show By Product Folder from the Settings > Preferences dialog
box.

9 In the left pane, click By Product > Demo > Check Constant block
usage.

10 Click Run This Check. The Model Advisor check fails for the Const_1
block and displays a Recommended Action to parametrize the constant
block.

24-10

Quick Start Examples

11 Follow the Recommended Action to fix the failed Constant block. In the
Model Advisor dialog box:

• Double-click the example2_qs/Const_1 hyperlink.

• Change Constant Parameters > Constant value to two, or a
nonnumeric value.

• Rerun the Model Advisor check. Both Constant blocks now pass the
check.

See Also

• “Register Checks and Process Callbacks” on page 24-18

• ModelAdvisor.FormatTemplate

24-11

24 Authoring Custom Checks

Create Customized Pass/Fail Check with Fix Action
The following example shows how to create a Model Advisor pass/fail check
with a fix action. In this example, the Model Advisor checks Constant blocks.
If a Constant block value is numeric, the check fails. The Model Advisor is
also customized to create a fix action for the failed checks.

1 In your working directory, update the sl_customization.m file, as shown
below. This file contains three functions, each of which use the Model
Advisor format template:

• defineModelAdvisorChecks — Defines the check, creates input
parameters, and defines the fix action.

• simpleCallback— Creates the check that finds Constant blocks with
numeric values.

• simpleActionCallback— Creates the fix for Constant blocks that fail
the check.

function sl_customization(cm)

% --- register custom checks

cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% --- defineModelAdvisorChecks function

function defineModelAdvisorChecks

mdladvRoot = ModelAdvisor.Root;

rec = ModelAdvisor.Check('exampleCheck');

rec.Title = 'Check Constant block usage';

rec.TitleTips = ['Fail if Constant block value is a number; Pass if '...

'Constant block value is a letter'];

rec.setCallbackFcn(@SimpleCallback,'None','StyleOne')

% --- input parameters

rec.setInputParametersLayoutGrid([1 1]);

inputParam1 = ModelAdvisor.InputParameter;

inputParam1.Name = 'Text entry example';

inputParam1.Value='VarNm';

inputParam1.Type='String';

inputParam1.Description='sample tooltip';

inputParam1.setRowSpan([1 1]);

24-12

Quick Start Examples

inputParam1.setColSpan([1 1]);

rec.setInputParameters({inputParam1});

% -- set fix operation

myAction = ModelAdvisor.Action;

myAction.setCallbackFcn(@simpleActionCallback);

myAction.Name='Fix Constant blocks';

myAction.Description=['Click the button to update all blocks with'...

'Text entry example'];

rec.setAction(myAction);

mdladvRoot.publish(rec, 'Demo');

% --- SimpleCallback function that checks constant blocks

function result = SimpleCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

result = {};

all_constant_blk=find_system(system,'LookUnderMasks','all',...

'FollowLinks','on','BlockType','Constant');

blk_with_value=find_system(all_constant_blk,'RegExp','On','Value','^[0-9]');

ft = ModelAdvisor.FormatTemplate('ListTemplate');

ft.setInformation(['This check looks for constant blocks that'...

' use numeric values']);

if ~isempty(blk_with_value)

ft.setSubResultStatusText(['Check has failed. The following '...

'Constant blocks have numeric values:']);

ft.setListObj(blk_with_value);

ft.setSubResultStatus('warn');

ft.setRecAction('Parameterize the constant block');

mdladvObj.setCheckResultStatus(false);

mdladvObj.setActionEnable(true);

else

ft.setSubResultStatusText(['Check has passed. No constant blocks'...

'with numeric values were found.']);

ft.setSubResultStatus('pass');

mdladvObj.setCheckResultStatus(true);

end

ft.setSubBar(0);

24-13

24 Authoring Custom Checks

result{end+1} = ft;

% --- creates SimpleActionCallback function that fixes failed check

function result = simpleActionCallback(taskobj)

mdladvObj = taskobj.MAObj;

result = {};

system = getfullname(mdladvObj.System);

% Get the string from the input parameter box.

inputParams = mdladvObj.getInputParameters;

textEntryEx = inputParams{1}.Value;

all_constant_blk=find_system(system,'LookUnderMasks','all',...

'FollowLinks','on','BlockType','Constant');

blk_with_value=find_system(all_constant_blk,'RegExp','On','Value','^[0-9]');

ft = ModelAdvisor.FormatTemplate('TableTemplate');

% Define table col titles

ft.setColTitles({'Block','Old Value','New Value'})

for inx=1:size(blk_with_value)

oldVal = get_param(blk_with_value{inx},'Value');

ft.addRow({blk_with_value{inx},oldVal,textEntryEx});

set_param(blk_with_value{inx},'Value',textEntryEx);

end

ft.setSubBar(0);

result = ft;

mdladvObj.setActionEnable(false);

2 Close the Model Advisor and your model if either are open.

3 At the MATLAB command line, enter:

sl_refresh_customizations

4 From the MATLAB Command Window, select New > Model to open a
new model.

5 In the Simulink model window, create two Constant blocks named
Const_One and Const_1:

24-14

Quick Start Examples

• Right-click the Const_One block, choose Constant Parameters, and
assign a Constant value of one.

• Right-click the Const_1 block, choose Constant Parameters, and
assign a Constant value of 1.

• Save your model as example3_qs.

6 From the model window, select Analysis > Model Advisor > Model
Advisor to open the Model Advisor.

7 A System Selector — Model Advisor dialog box opens. Click OK. The
Model Advisor window opens. It might take a few minutes.

8 If the By Product folder is not displayed in the Model Advisor window,
select Show By Product Folder from the Settings > Preferences dialog
box.

9 In the left pane, click By Product > Demo > Check Constant block
usage.

10 Click Run This Check. The Model Advisor check fails for the Const_1
block. The Model Advisor box has a Fix Constant blocks button in the
Action section of the Model Advisor dialog box.

24-15

24 Authoring Custom Checks

11 In the Model Advisor Dialog box, enter a nonnumeric value in the Text
entry example parameter field in the Analysis section of the Model
Advisor dialog box. In this example, the value is VarNm.

12 Click Fix Constant blocks. The Const_1 Constant block value changes
from 1 to the nonnumeric value that you entered in step 10. The Result
section of the dialog box lists the Old Value and New Value of the Const_1
block.

24-16

Quick Start Examples

13 In the Model Advisor dialog box, click Run This Check. Both constant
blocks now pass the check.

See Also

• “Register Checks and Process Callbacks” on page 24-18

• ModelAdvisor.FormatTemplate

• “Define Check Input Parameters” on page 24-28 to add input parameters to
Model Advisor checks

• ModelAdvisor.Action to add fix actions to Model Advisor checks

24-17

24 Authoring Custom Checks

Register Checks and Process Callbacks

In this section...

“Create sl_customization Function” on page 24-18

“Register Checks and Process Callbacks” on page 24-18

“Define Startup and Post-Execution Actions Using Process Callback
Functions” on page 24-20

Create sl_customization Function
To add checks to the Model Advisor, on your MATLAB path, in the
sl_customization.m file, create the sl_customization() function.

Tip

• You can have more than one sl_customization.m file on your MATLAB
path.

• Do not place an sl_customization.m file that customizes checks and
folders in the Model Advisor in your root MATLAB folder or its subfolders,
except for the matlabroot/work folder. Otherwise, the Model Advisor
ignores the customizations that the file specifies.

The sl_customization function accepts one argument, a customization
manager object, as in this example:

function sl_customization(cm)

The customization manager object includes methods for registering custom
checks and process callbacks. Use these methods to register customizations
specific to your application, as described in the following sections.

Register Checks and Process Callbacks
To register custom checks and process callbacks, the customization manager
includes the following methods:

24-18

Register Checks and Process Callbacks

• addModelAdvisorCheckFcn (@checkDefinitionFcn)

Registers the checks that you define in checkDefinitionFcn to the By
Product folder of the Model Advisor.

The checkDefinitionFcn argument is a handle to the function that defines
custom checks that you want to add to the Model Advisor as instances of the
ModelAdvisor.Check class (see “Define Custom Checks” on page 24-23).

• addModelAdvisorProcessFcn (@modelAdvisorProcessFcn)

Registers the process callback function for the Model Advisor checks
(see “Define Startup and Post-Execution Actions Using Process Callback
Functions” on page 24-20).

Caution The Model Advisor registers only one process callback function.
If you have more than one sl_customization.m file on your MATLAB
path, the Model Advisor registers the process callback function from the
sl_customization.m file that has the highest priority.

If the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

Note The @ sign defines a function handle that MATLAB calls. For more
information, see “At — @” in the MATLAB documentation.

Register Custom Checks and Process Callbacks
The following code example registers custom checks and a process callback
function:

function sl_customization(cm)

% register custom checks

cm.addModelAdvisorCheckFcn(@defineModelAdvisorChecks);

% register custom process callback

cm.addModelAdvisorProcessFcn(@ModelAdvisorProcessFunction);

24-19

24 Authoring Custom Checks

Note If you add custom tasks and folders within the sl_customization.m
file, include methods for registering the tasks and folders in the
sl_customization function. For more information, see “Register Tasks and
Folders” on page 25-13.

Define Startup and Post-Execution Actions Using
Process Callback Functions
The process callback function is an optional function that you use to configure
the Model Advisor and process check results at run time. The process callback
function specifies actions that the software performs at different stages of
Model Advisor execution:

• configure stage: The Model Advisor executes configure actions at
startup, after checks and tasks have been initialized. At this stage, you can
customize how the Model Advisor constructs lists of checks and tasks by
modifying Visible, Enable, and Value properties. For example, you can
remove, rename, and selectively display checks and tasks.

• process_results stage: The Model Advisor executes process_results
actions after checks complete execution. You can specify actions to examine
and report on the results returned by check callback functions.

If you create a process callback function, you must register it, as described in
“Register Checks and Process Callbacks” on page 24-18. The following sections
provide mode information about defining your own process callback functions.

Process Callback Function Arguments
The process callback function takes the following arguments.

24-20

Register Checks and Process Callbacks

Argument I/O Type Data Type Description

stage Input Enumeration Specifies the stages at
which process callback
actions are executed.
Use this argument in
a switch statement to
specify actions for the
stages configure and
process_results.

system Input Path Model or subsystem
that the Model Advisor
analyzes.

checkCellArray Input/Output Cell array As input, the array of
checks constructed in the
check definition function.
As output, the array of
checks modified by actions
in the configure stage.

taskCellArray Input/Output Cell array As input, the array of
tasks constructed in the
task definition function.
As output, the array of
tasks modified by actions
in the configure stage.

Process Callback Function
The following code is an example of a process callback function that specifies
actions in the configure stage, to make only custom checks visible. In the
process_results stage, this function displays information at the MATLAB
command line for checks that do not pass.

% Process Callback Function

% Defines actions to execute at startup and post-execution

function [checkCellArray taskCellArray] = ...

ModelAdvisorProcessFunction(stage, system, checkCellArray, taskCellArray)

switch stage

% Specify the appearance of the Model Advisor window at startup

24-21

24 Authoring Custom Checks

case 'configure'

for i=1:length(checkCellArray)

% Hide all checks that do not belong to custom folder

if isempty(strfind(checkCellArray{i}.ID, 'mathworks.example'))

checkCellArray{i}.Visible = false;

checkCellArray{i}.Value = false;

end

end

% Specify actions to perform after the Model Advisor completes execution

case 'process_results'

for i=1:length(checkCellArray)

% Print message if check does not pass

if checkCellArray{i}.Selected && (strcmp(checkCellArray{i}.Title, ...

'Check Simulink window screen color'))

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

% Verify whether the check was run and if it failed

if mdladvObj.verifyCheckRan(checkCellArray{i}.ID)

if ~mdladvObj.getCheckResultStatus(checkCellArray{i}.ID)

% Display text in MATLAB Command Window

disp(['Example message from Model Advisor Process'...

' callback.']);

end

end

end

end

end

24-22

Define Custom Checks

Define Custom Checks

In this section...

“About Custom Checks” on page 24-23

“Contents of Check Definitions” on page 24-23

“Display and Enable Checks” on page 24-25

“Define Where Custom Checks Appear” on page 24-26

“Check Definition Function” on page 24-27

“Define Check Input Parameters” on page 24-28

“Define Model Advisor Result Explorer Views” on page 24-30

“Define Check Actions” on page 24-31

About Custom Checks
You can create a custom check to use in the Model Advisor. Creating
custom checks provides you with the ability to specify which conditions and
configuration settings the Model Advisor reviews.

You define custom checks in one or more functions that specify the properties
of each instance of the ModelAdvisor.Check class. Define one instance of
this class for each custom check that you want to add to the Model Advisor,
and register the custom check as described in “Register Checks and Process
Callbacks” on page 24-18.

Tip You can add a check to multiple folders by creating a task. For more
information, see “Add Check to Custom or Multiple Folders Using Tasks” on
page 25-15.

The following sections describe how to define custom checks.

Contents of Check Definitions
When you define a Model Advisor check, it contains the information listed
in the following table.

24-23

24 Authoring Custom Checks

Contents Description

Check ID (required) Uniquely identifies the check. The
Model Advisor uses this id to access
the check.

Handle to check callback function
(required)

Function that specifies the contents
of a check.

Check name (recommended) Creates a name for the check that
the Model Advisor displays.

Check properties (optional) Creates a user interface with the
check. When adding checks as
tasks, the Model Advisor uses the
task properties instead of the check
properties, except for Visible and
LicenseName. For more information,
see ModelAdvisor.Check and
ModelAdvisor.Task.

Tip When you add checks to the
Model Advisor as tasks, specify
only the required properties
of a check, because the task
definition includes the additional
properties. For example, you
define the description of the check
in the task definition using the
ModelAdvisor.Task.Description
property instead of the
ModelAdvisor.Check.TitleTips
property.

Input Parameters (optional) Adds input parameters that request
input from the user. The Model
Advisor uses the input to perform
the check.

24-24

Define Custom Checks

Contents Description

Action (optional) Adds automatic fixing action.

Explore Result button (optional) Adds the Explore Result button
that the user clicks to open the
Model Advisor Result Explorer.

Display and Enable Checks
You can create a check and specify how it appears in the Model Advisor.
You can define when to display a check, or whether a user can select or
clear a check using the Visible, Enable, and Value properties of the
ModelAdvisor.Check class.

Note When adding checks to the Model Advisor as tasks, specify these
properties in the ModelAdvisor.Task class. If you specify the properties in
both ModelAdvisor.Check and ModelAdvisor.Task, the ModelAdvisor.Task
properties take precedence, except for the Visible and LicenseName
properties. For more information, see ModelAdvisor.Task.

Modify the behavior of the Visible, Enable, and Value properties in a process
callback function (see “Define Startup and Post-Execution Actions Using
Process Callback Functions” on page 24-20). The following chart illustrates
how these properties interact.

24-25

24 Authoring Custom Checks

+����
�0
����
����
�	
�$���
������

("���
1���
�

�����+�
��
���������

��
��

����

1���
��0
��
��

����

����
�	
�$���
������

2��$�������
�$�����'

����
�	
�$�����'
����������
+�
��&����
"��	�����

����
�	
�$���
������

Define Where Custom Checks Appear
Specify where the Model Advisor places custom checks using the following
guidelines:

• To place a check in a new folder in the Model Advisor root, use the
ModelAdvisor.Group class. See “Define Custom Tasks” on page 25-14.

• To place a check in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class. See “Define Custom Tasks” on page
25-14.

24-26

Define Custom Checks

• To place a check in the By Product folder, use the
ModelAdvisor.Root.publish method. If the By Product folder
is not displayed in the Model Advisor window, select Show By Product
Folder from the Settings > Preferences dialog box.

Check Definition Function
The following is an example of a function that defines the custom checks
associated with the callback functions described in “Create Callback Functions
and Results” on page 24-34. The check definition function returns a cell array
of custom checks to be added to the Model Advisor.

The check definitions in the example use the tasks described in “Define
Custom Tasks” on page 25-14.

% Defines custom Model Advisor checks

function defineModelAdvisorChecks

% Sample check 1: Informational check

rec = ModelAdvisor.Check('mathworks.example.configManagement');

rec.Title = 'Informational check for model configuration management';

setCallbackFcn(rec, @modelVersionChecksumCallbackUsingFT,'None','StyleOne');

rec.CallbackContext = 'PostCompile';

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

% Sample check 2: Basic Check with Pass/Fail Status

rec = ModelAdvisor.Check('mathworks.example.unconnectedObjects');

rec.Title = 'Check for unconnected objects';

setCallbackFcn(rec, @unconnectedObjectsCallbackUsingFT,'None','StyleOne');

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

% Sample Check 3: Check with Subchecks and Actions

rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');

rec.Title = 'Check safety-related optimization settings';

setCallbackFcn(rec, @OptmizationSettingCallback,'None','StyleOne');

% Define an automatic fix action for this check

modifyAction = ModelAdvisor.Action;

setCallbackFcn(modifyAction, @modifyOptmizationSetting);

modifyAction.Name = 'Modify Settings';

24-27

24 Authoring Custom Checks

modifyAction.Description = ['Modify model configuration optimization' ...

' settings that can impact safety.'];

modifyAction.Enable = true;

setAction(rec, modifyAction);

mdladvRoot = ModelAdvisor.Root;

mdladvRoot.register(rec);

Define Check Input Parameters
With input parameters, the check author can request input from the
user for a Model Advisor check. Define input parameters using the
ModelAdvisor.InputParameter class inside a custom check function (see
“Define Custom Checks” on page 24-23). You must define one instance of this
class for each input parameter that you want to add to a Model Advisor check.

Note You do not have to create input parameters for every custom check.

Specify Input Parameter Layout
Specify the layout of input parameters in an input parameter definition. To
place input parameters, use the following methods.

Method Description

ModelAdvisor.Check
setInputParametersLayoutGrid

Specifies the size of the input
parameter grid.

ModelAdvisor.InputParameter
setRowSpan

Specifies the number of rows the
parameter occupies in the Input
Parameter layout grid.

ModelAdvisor.InputParameter
setColSpan

Specifies the number of columns
the parameter occupies in the Input
Parameter layout grid.

For information on using these methods, see the ModelAdvisor.Check and
ModelAdvisor.InputParameter class documentation.

24-28

Define Custom Checks

Input Parameter Definition
The following is an example of defining input parameters that you add to
a custom check. You must include input parameter definitions inside a
custom check definition (see “Check Definition Function” on page 24-27). The
following code, when included in a custom check definition, creates three
input parameters.

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.setInputParametersLayoutGrid([3 2]);
% define input parameters
inputParam1 = ModelAdvisor.InputParameter;
inputParam1.Name = 'Skip font checks.';
inputParam1.Type = 'Bool';
inputParam1.Value = false;
inputParam1.Description = 'sample tooltip';
inputParam1.setRowSpan([1 1]);
inputParam1.setColSpan([1 1]);
inputParam2 = ModelAdvisor.InputParameter;
inputParam2.Name = 'Standard font size';
inputParam2.Value='12';
inputParam2.Type='String';
inputParam2.Description='sample tooltip';
inputParam2.setRowSpan([2 2]);
inputParam2.setColSpan([1 1]);
inputParam3 = ModelAdvisor.InputParameter;
inputParam3.Name='Valid font';
inputParam3.Type='Combobox';
inputParam3.Description='sample tooltip';
inputParam3.Entries={'Arial', 'Arial Black'};
inputParam3.setRowSpan([2 2]);
inputParam3.setColSpan([2 2]);
rec.setInputParameters({inputParam1,inputParam2,inputParam3});

The Model Advisor displays these input parameters in the right pane, in
an Input Parameters box.

24-29

24 Authoring Custom Checks

Define Model Advisor Result Explorer Views
A list view provides a way for users to fix check warnings and failures using
the Model Advisor Result Explorer. Creating a list view allows you to :

• Add the Explore Result button to the custom check in the Model Advisor
window.

• Provide the information to populate the Model Advisor Result Explorer.

For information on using the Model Advisor Results Explorer, see “Batch-Fix
Warnings or Failures” in the Simulink documentation.

Define list views using the ModelAdvisor.ListViewParameter class inside a
custom check function (see “Define Custom Checks” on page 24-23). You must
define one instance of this class for each list view that you want to add to a
Model Advisor Result Explorer window.

Note You do not have to create list views for every custom check.

24-30

Define Custom Checks

List View Definition
The following is an example of defining list views. You must make theExplore
Result button visible using the ModelAdvisor.Check.ListViewVisible
property inside a custom check function, and include list view definitions
inside a check callback function (see “Detailed Check Callback Function”
on page 24-43).

The following code, when included in a check definition function, adds the
Explore Result button to the check in the Model Advisor.

rec = ModelAdvisor.Check('com.mathworks.sample.Check1');

% add 'Explore Result' button

rec.ListViewVisible = true;

The following code, when included in a check callback function, provides the
information to populate the Model Advisor Result Explorer.

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

% define list view parameters

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % the name appeared at pull down filter

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

mdladvObj.setListViewParameters({myLVParam});

Define Check Actions
An action provides a way for you to specify an action that the Model Advisor
performs to fix a Model Advisor check. When you define an action, the Model
Advisor window includes an Action box below the Analysis box.

You define actions using the ModelAdvisor.Action class inside a custom
check function (see “Define Custom Checks” on page 24-23). You must define:

• One instance of this class for each action that you want to take.

• One action callback function for each action (see “Action Callback Function”
on page 24-49).

24-31

24 Authoring Custom Checks

Note

• Each check can contain only one action.

• You do not have to create actions for every custom check.

Action Definition
The following is an example of defining actions within a custom check. You
must include action definitions inside a check definition function (see “Check
Definition Function” on page 24-27).

The following code, when included in a check definition function, provides the
information to populate the Action box in the Model Advisor.

rec = ModelAdvisor.Check('mathworks.example.optimizationSettings');

% Define an automatic fix action for this check

modifyAction = ModelAdvisor.Action;

modifyAction.setCallbackFcn(@modifyOptmizationSetting);

modifyAction.Name = 'Modify Settings';

modifyAction.Description = ['Modify model configuration optimization' ...

' settings that can impact safety'];

modifyAction.Enable = true;

rec.setAction(modifyAction);

The Model Advisor, in the right pane, displays an Action box.

24-32

Define Custom Checks

24-33

24 Authoring Custom Checks

Create Callback Functions and Results

In this section...

“About Callback Functions” on page 24-34

“Common Utilities for Authoring Checks” on page 24-35

“Simple Check Callback Function” on page 24-35

“Detailed Check Callback Function” on page 24-43

“Check Callback Function with Hyperlinked Results” on page 24-45

“Action Callback Function” on page 24-49

“Format Model Advisor Results” on page 24-50

About Callback Functions
A callback function specifies the actions that the Model Advisor performs on
a model or subsystem, based on the check or action that the user runs. You
must create a callback function for each custom check and action so that the
Model Advisor can execute the function when a user runs the check. There
are several types of callback functions:

• “Simple Check Callback Function” on page 24-35

• “Detailed Check Callback Function” on page 24-43

• “Check Callback Function with Hyperlinked Results” on page 24-45

• “Action Callback Function” on page 24-49

All types of callback functions provide one or more return arguments for
displaying the results after executing the check or action. In some cases,
return arguments are strings or cell arrays of strings that support embedded
HTML tags for text formatting. Use the Model Advisor Result Template API
to format check results, as described in “Format Model Advisor Results” on
page 24-50. Limit HTML tags to be compatible with alternate output formats.

24-34

Create Callback Functions and Results

Common Utilities for Authoring Checks
When you create a check, there are common Simulink utilities that you
can use to make the check perform different actions. Following is a list of
utilities and when to use them. In the Utility column, click the link for more
information about the utility.

Utility Used for...

find_system Getting handle or path to:

• Blocks

• Lines

• Annotations

When getting the object, you can:

• Specify a search depth

• Search under masks and libraries

get_param / set_param Getting and setting system and
block parameter values.

inspect Getting object properties. First you
must get a handle to the object.

evalin Working in the base workspace.

Stateflow API Programmatic access to Stateflow
objects.

Simple Check Callback Function
Use a simple check callback function with results formatted using the Result
Template API to indicate whether the model passed or failed the check, or
to recommend fixing an issue. The keyword for this callback function is
StyleOne. The check definition requires this keyword (see “Define Custom
Checks” on page 24-23).

The check callback function takes the following arguments.

24-35

24 Authoring Custom Checks

Argument I/O Type Description

system Input Path to the model or subsystem analyzed by the
Model Advisor.

result Output MATLAB string that supports Model Advisor
Formatting API calls or embedded HTML tags
for text formatting.

Informational Check Callback Function
The following code is an example of a callback function for a custom
informational check that finds and displays the model configuration and
checksum information. The informational check uses the Result Template
API to format the check result.

An informational check includes the following items in the results:

• A description of what the check is reviewing.

• References to standards, if applicable.

An informational check does not include the following items in the results:

• The check status. The Model Advisor displays the overall check status,
but the status is not in the result.

• A description of the status.

• The recommended action to take when the check does not pass.

• Subcheck results.

• A line below the results.

% Sample Check 1 Callback Function: Informational Check

% Find and display model configuration and checksum information

% Informational checks do not have a passed or warning status in the results

function resultDescription = modelVersionChecksumCallbackUsingFT(system)

resultDescription = [];

system = getfullname(system);

model = bdroot(system);

24-36

Create Callback Functions and Results

% Format results in a list using Model Advisor Result Template API

ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Add See Also section for references to standards

docLinkSfunction{1} = {['IEC 61508-3, Table A.8 (5)' ...

' ''Software configuration management'' ']};

setRefLink(ft,docLinkSfunction);

% Description of check in results

desc = 'Display model configuration and checksum information.';

% If running the Model Advisor on a subsystem, add note to description

if strcmp(system, model) == false

desc = strcat(desc, ['
NOTE: The Model Advisor is reviewing a' ...

' sub-system, but these results are based on root-level settings.']);

end

setCheckText(ft, desc);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

% If err, use these values

mdlver = 'Error - could not retrieve Version';

mdlauthor = 'Error - could not retrieve Author';

mdldate = 'Error - could not retrieve Date';

mdlsum = 'Error - could not retrieve CheckSum';

% Get model configuration and checksum information

try

mdlver = get_param(model,'ModelVersion');

mdlauthor = get_param(model,'LastModifiedBy');

mdldate = get_param(model,'LastModifiedDate');

mdlsum = Simulink.BlockDiagram.getChecksum(model);

mdlsum = [num2str(mdlsum(1)) ' ' num2str(mdlsum(2)) ' ' ...

num2str(mdlsum(3)) ' ' num2str(mdlsum(4))];

mdladvObj.setCheckResultStatus(true); % init to true

catch err

mdladvObj.setCheckResultStatus(false);

setSubResultStatusText(ft,err.message);

resultDescription{end+1} = ft;

return

end

24-37

24 Authoring Custom Checks

% Display the results

lbStr ='
';

resultStr = ['Model Version: ' mdlver lbStr 'Author: ' mdlauthor lbStr ...

'Date: ' mdldate lbStr 'Model Checksum: ' mdlsum];

setSubResultStatusText(ft,resultStr);

% Informational checks do not have subresults, supress line

setSubBar(ft,false);

resultDescription{end+1} = ft;

Basic Check with Pass/Fail Status
Here is an example of a callback function for a custom basic check that finds
and reports unconnected lines, input ports, and output ports.

A basic check includes the following items in the results:

• A description of what the check is reviewing.

• References to standards, if applicable.

• The status of the check.

• A description of the status.

• Results for the check.

• The recommended actions to take when the check does not pass.

A basic check does not include the following items in the results:

• Subcheck results.

• A line below the results.

% Sample Check 2 Callback Function: Basic Check with Pass/Fail Status

% Find and report unconnected lines, input ports, and output ports

function ResultDescription = unconnectedObjectsCallbackUsingFT(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

% Initialize variables

mdladvObj.setCheckResultStatus(false);

ResultDescription ={};

ResultStatus = false; % Default check status is 'Warning'

24-38

Create Callback Functions and Results

system = getfullname(system);

isSubsystem = ~strcmp(bdroot(system), system);

% Format results in a list using Model Advisor Result Template API

% Create a list template object

ft = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results

if isSubsystem

checkDescStr = ['Identify unconnected lines, input ports, and ' ...

'output ports in the subsystem.'];

else

checkDescStr = ['Identify unconnected lines, input ports, and ' ...

'output ports in the model.'];

end

setCheckText(ft,checkDescStr);

% Add See Also section with references to applicable standards

checkStdRef = 'IEC 61508-3, Table A.3 (3) ''Language subset'' ';

docLinkSfunction{1} = {checkStdRef};

setRefLink(ft,docLinkSfunction);

% Basic checks do not have subresults, supress line

setSubBar(ft,false);

% Check for unconnected lines, inputs, and outputs

sysHandle = get_param(system, 'Handle');

uLines = find_system(sysHandle, ...

'Findall', 'on', ...

'LookUnderMasks', 'on', ...

'Type', 'line', ...

'Connected', 'off');

uPorts = find_system(sysHandle, ...

'Findall', 'on', ...

'LookUnderMasks', 'on', ...

'Type', 'port', ...

'Line', -1);

% Use parents of port objects for the correct highlight behavior

if ~isempty(uPorts)

24-39

24 Authoring Custom Checks

for i=1:length(uPorts)

uPorts(i) = get_param(get_param(uPorts(i), 'Parent'), 'Handle');

end

end

% Create cell array of unconnected object handles

modelObj = {};

searchResult = union(uLines, uPorts);

for i = 1:length(searchResult)

modelObj{i} = searchResult(i);

end

% No unconnected objects in model

% Set result status to 'Pass' and display text describing the status

if isempty(modelObj)

setSubResultStatus(ft,'Pass');

if isSubsystem

setSubResultStatusText(ft,['There are no unconnected lines, ' ...

'input ports, and output ports in this subsystem.']);

else

setSubResultStatusText(ft,['There are no unconnected lines, ' ...

'input ports, and output ports in this model.']);

end

ResultStatus = true;

% Unconnected objects in model

% Set result status to 'Warning' and display text describing the status

else

setSubResultStatus(ft,'Warn');

if ~isSubsystem

setSubResultStatusText(ft,['The following lines, input ports, ' ...

'or output ports are not properly connected in the system: ' system]);

else

setSubResultStatusText(ft,['The following lines, input ports, or ' ...

'output ports are not properly connected in the subsystem: ' system]);

end

% Specify recommended action to fix the warning

setRecAction(ft,'Connect the specified blocks.');

% Create a list of handles to problem objects

setListObj(ft,modelObj);

ResultStatus = false;

24-40

Create Callback Functions and Results

end

% Pass the list template object to the Model Advisor

ResultDescription{end+1} = ft;

% Set overall check status

mdladvObj.setCheckResultStatus(ResultStatus);

Check With Subchecks and Actions
Here is an example of a callback function for a custom check that finds and
reports optimization settings. The check consists of two subchecks. The first
reviews the Block reduction optimization setting, and the second reviews
the Conditional input branch execution optimization setting.

A check with subchecks includes the following items in the results:

• A description of what the overall check is reviewing.

• A title for the subcheck.

• A description of what the subcheck is reviewing.

• References to standards, if applicable.

• The status of the subcheck.

• A description of the status.

• Results for the subcheck.

• Recommended actions to take when the subcheck does not pass.

• A line between the subcheck results.

% Sample Check 3 Callback Function: Check with Subchecks and Actions

% Find and report optimization settings

function ResultDescription = OptmizationSettingCallback(system)

% Initialize variables

system =getfullname(system);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(false); % Default check status is 'Warning'

ResultDescription = {};

system = bdroot(system);

% Format results in a list using Model Advisor Result Template API

24-41

24 Authoring Custom Checks

% Create a list template object for first subcheck

ft1 = ModelAdvisor.FormatTemplate('ListTemplate');

% Description of check in results

setCheckText(ft1,['Check model configuration for optimization settings that'...

'can impact safety.']);

% Title and description of first subcheck

setSubTitle(ft1,'Verify Block reduction setting');

setInformation(ft1,'Check whether the ''Block reduction'' check box is cleared.');

% Add See Also section with references to applicable standards

docLinks{1} = {['Reference DO-178B Section 6.3.4e - Source code ' ...

'is traceable to low-level requirements']};

% Review 'Block reduction' optimization

setRefLink(ft1,docLinks);

if strcmp(get_param(system,'BlockReduction'),'off')

% 'Block reduction' is cleared

% Set subresult status to 'Pass' and display text describing the status

setSubResultStatus(ft1,'Pass');

setSubResultStatusText(ft1,'The ''Block reduction'' check box is cleared.');

ResultStatus = true;

else

% 'Block reduction' is selected

% Set subresult status to 'Warning' and display text describing the status

setSubResultStatus(ft1,'Warn');

setSubResultStatusText(ft1,'The ''Block reduction'' check box is selected.');

setRecAction(ft1,['Clear the ''Optimization > Block reduction''' ...

' check box in the Configuration Parameters dialog box.']);

ResultStatus = false;

end

ResultDescription{end+1} = ft1;

% Title and description of second subcheck

ft2 = ModelAdvisor.FormatTemplate('ListTemplate');

setSubTitle(ft2,'Verify Conditional input branch execution setting');

setInformation(ft2,['Check whether the ''Conditional input branch execution'''...

' check box is cleared.'])

% Add See Also section and references to applicable standards

docLinks{1} = {['Reference DO-178B Section 6.4.4.2 - Test coverage ' ...

24-42

Create Callback Functions and Results

'of software structure is achieved']};

setRefLink(ft2,docLinks);

% Last subcheck, supress line

setSubBar(ft2,false);

% Check status of the 'Conditional input branch execution' check box

if strcmp(get_param(system,'ConditionallyExecuteInputs'),'off')

% The 'Conditional input branch execution' check box is cleared

% Set subresult status to 'Pass' and display text describing the status

setSubResultStatus(ft2,'Pass');

setSubResultStatusText(ft2,['The ''Conditional input branch execution''' ...

'check box is cleared.']);

else

% 'Conditional input branch execution' is selected

% Set subresult status to 'Warning' and display text describing the status

setSubResultStatus(ft2,'Warn');

setSubResultStatusText(ft2,['The ''Conditional input branch execution'''...

' check box is selected.']);

setRecAction(ft2,['Clear the ''Optimization > Conditional input branch ' ...

'execution'' check box in the Configuration Parameters dialog box.']);

ResultStatus = false;

end

ResultDescription{end+1} = ft2; % Pass list template object to Model Advisor

mdladvObj.setCheckResultStatus(ResultStatus); % Set overall check status

% Enable Modify Settings button when check fails

mdladvObj.setActionEnable(~ResultStatus);

Detailed Check Callback Function
Use the detailed check callback function to return and organize results as
strings in a layered, hierarchical fashion. The function provides two output
arguments so you can associate text descriptions with one or more paragraphs
of detailed information. The keyword for the detailed callback function is
StyleTwo. The check definition requires this keyword (see “Define Custom
Checks” on page 24-23).

The detailed callback function takes the following arguments.

24-43

24 Authoring Custom Checks

Argument I/O Type Description

system Input Path to the model or system
analyzed by the Model Advisor.

ResultDescription Output Cell array of MATLAB strings
that supports Model Advisor
Formatting API calls or embedded
HTML tags for text formatting.
The Model Advisor concatenates
the ResultDescription string
with the corresponding array of
ResultDetails strings.

ResultDetails Output Cell array of cell arrays, each of
which contains one or more strings.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

Here is an example of a detailed check callback function that checks
optimization settings for simulation and code generation.

function [ResultDescription, ResultDetails] = SampleStyleTwoCallback(system)

ResultDescription ={};

ResultDetails ={};

model = bdroot(system);

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system); % get object

mdladvObj.setCheckResultStatus(true); % init result status to pass

% Check Simulation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check Simulation '...

'optimization settings:']);

if strcmp(get_param(model,'BlockReduction'),'off');

ResultDetails{end+1} = {ModelAdvisor.Text(['It is recommended to '...

'turn on Block reduction optimization option.'],{'italic'})};

mdladvObj.setCheckResultStatus(false); % set to fail

mdladvObj.setActionEnable(true);

24-44

Create Callback Functions and Results

else

ResultDetails{end+1} = {ModelAdvisor.Text('Passed',{'pass'})};

end

% Check code generation optimization setting

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Check code generation '...

'optimization settings:']);

ResultDetails{end+1} = {};

if strcmp(get_param(model,'LocalBlockOutputs'),'off');

ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...

' turn on Enable local block outputs option.'],{'italic'});

ResultDetails{end}{end+1} = ModelAdvisor.LineBreak;

mdladvObj.setCheckResultStatus(false); % set to fail

mdladvObj.setActionEnable(true);

end

if strcmp(get_param(model,'BufferReuse'),'off');

ResultDetails{end}{end+1} = ModelAdvisor.Text(['It is recommended to'...

' turn on Reuse block outputs option.'],{'italic'});

mdladvObj.setCheckResultStatus(false); % set to fail

mdladvObj.setActionEnable(true);

end

if isempty(ResultDetails{end})

ResultDetails{end}{end+1} = ModelAdvisor.Text('Passed',{'pass'});

end

Check Callback Function with Hyperlinked Results
This callback function automatically displays hyperlinks for every object
returned by the check so that you can easily locate problem areas in your
model or subsystem. The keyword for this type of callback function is
StyleThree. The check definition requires this keyword (see “Define Custom
Checks” on page 24-23).

This callback function takes the following arguments.

24-45

24 Authoring Custom Checks

Argument I/O Type Description

system Input Path to the model or system
analyzed by the Model Advisor.

ResultDescription Output Cell array of MATLAB strings
that supports the Model Advisor
Formatting API calls or embedded
HTML tags for text formatting.

ResultDetails Output Cell array of cell arrays, each
of which contains one or more
Simulink objects such as blocks,
ports, lines, and Stateflow charts.
The objects must be in the form of a
handle or Simulink path.

Note The ResultDetails cell array must be the same length as the
ResultDescription cell array.

The Model Advisor automatically concatenates each string from
ResultDescription with the corresponding array of objects from
ResultDetails. The Model Advisor displays the contents of ResultDetails
as a set of hyperlinks, one for each object returned in the cell arrays. When
you click a hyperlink, the Model Advisor displays the target object highlighted
in your Simulink model.

The following is an example of a check callback function with hyperlinked
results. This example checks a model for consistent use of font type and font
size in its blocks. It also contains input parameters, actions, and a call to the
Model Advisor Result Explorer, which are described in later sections.

function [ResultDescription, ResultDetails] = SampleStyleThreeCallback(system)

ResultDescription ={};

ResultDetails ={};

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

mdladvObj.setCheckResultStatus(true);

needEnableAction = false;

24-46

Create Callback Functions and Results

% get input parameters

inputParams = mdladvObj.getInputParameters;

skipFontCheck = inputParams{1}.Value;

regularFontSize = inputParams{2}.Value;

regularFontName = inputParams{3}.Value;

if skipFontCheck

ResultDescription{end+1} = ModelAdvisor.Paragraph('Skipped.');

ResultDetails{end+1} = {};

return

end

regularFontSize = str2double(regularFontSize);

if regularFontSize<1 || regularFontSize>=99

mdladvObj.setCheckResultStatus(false);

ResultDescription{end+1} = ModelAdvisor.Paragraph(['Invalid font size. '...

'Please enter a value between 1 and 99']);

ResultDetails{end+1} = {};

end

% find all blocks inside current system

allBlks = find_system(system);

% block diagram doesn't have font property

% get blocks inside current system that have font property

allBlks = setdiff(allBlks, {system});

% find regular font name blocks

regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system

searchResult = setdiff(allBlks, regularBlks);

if ~isempty(searchResult)

ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...

'use same font for blocks for a uniform appearance in the model. '...

'The following blocks use a font other than ' regularFontName ': ']);

ResultDetails{end+1} = searchResult;

mdladvObj.setCheckResultStatus(false);

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font blocks'; % pull down filter name

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontName'}; % name is default property

24-47

24 Authoring Custom Checks

mdladvObj.setListViewParameters({myLVParam});

needEnableAction = true;

else

ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font names '...

'are identical.']);

ResultDetails{end+1} = {};

end

% find regular font size blocks

regularBlks = find_system(allBlks,'FontSize',regularFontSize);

% look for different font size blocks in the system

searchResult = setdiff(allBlks, regularBlks);

if ~isempty(searchResult)

ResultDescription{end+1} = ModelAdvisor.Paragraph(['It is recommended to '...

'use same font size for blocks for a uniform appearance in the model. '...

'The following blocks use a font size other than ' ...

num2str(regularFontSize) ': ']);

ResultDetails{end+1} = searchResult;

mdladvObj.setCheckResultStatus(false);

myLVParam = ModelAdvisor.ListViewParameter;

myLVParam.Name = 'Invalid font size blocks'; % pull down filter name

myLVParam.Data = get_param(searchResult,'object')';

myLVParam.Attributes = {'FontSize'}; % name is default property

mdladvObj.setListViewParameters...

({mdladvObj.getListViewParameters{:}, myLVParam});

needEnableAction = true;

else

ResultDescription{end+1} = ModelAdvisor.Paragraph(['All block font sizes '...

'are identical.']);

ResultDetails{end+1} = {};

end

mdladvObj.setActionEnable(needEnableAction);

mdladvObj.setCheckErrorSeverity(1);

In the Model Advisor, if you run Example task with input parameter
and auto-fix ability for the slvnvdemo_mdladv model, you can view the
hyperlinked results. Clicking the first hyperlink, slvnvdemo_mdladv/Input,
displays the Simulink model with the Input block highlighted.

24-48

Create Callback Functions and Results

Action Callback Function
An action callback function specifies the actions that the Model Advisor
performs on a model or subsystem when the user clicks the action button. You
must create one callback function for the action that you want to take.

The action callback function takes the following arguments.

Argument I/O Type Description

taskobj Input The ModelAdvisor.Task object for the check
that includes an action definition.

result Output MATLAB string that supports Model Advisor
Formatting API calls or embedded HTML tags
for text formatting.

Action Callback Function
The following is an example of an action callback function that fixes the
optimization settings that the Model Advisor reviews as defined in “ Check
With Subchecks and Actions” on page 24-41.

% Sample Check 3 Action Callback Function: Check with Subresults and Actions

% Fix optimization settings

function result = modifyOptmizationSetting(taskobj)

% Initialize variables

result = ModelAdvisor.Paragraph();

mdladvObj = taskobj.MAObj;

system = bdroot(mdladvObj.System);

% 'Block reduction' is selected

% Clear the check box and display text describing the change

if ~strcmp(get_param(system,'BlockReduction'),'off')

set_param(system,'BlockReduction','off');

result.addItem(ModelAdvisor.Text(...

'Cleared the ''Block reduction'' check box.',{'Pass'}));

result.addItem(ModelAdvisor.LineBreak);

end

% 'Conditional input branch execution' is selected

% Clear the check box and display text describing the change

if ~strcmp(get_param(system,'ConditionallyExecuteInputs'),'off')

24-49

24 Authoring Custom Checks

set_param(system,'ConditionallyExecuteInputs','off');

result.addItem(ModelAdvisor.Text(...

'Cleared the ''Conditional input branch execution'' check box.', ...

{'Pass'}));

end

For an example of an action callback function that updates all of the blocks in
the model with the font specified in the Input Parameter defined in “Input
Parameter Definition” on page 24-29, review the customization source code
in slvnvdemo_mdladv.

Format Model Advisor Results

• “Overview of Displaying Results” on page 24-50

• “Format Model Advisor Results” on page 24-51

• “Format Text” on page 24-51

• “Format Lists” on page 24-52

• “Format Tables” on page 24-52

• “Format Paragraphs” on page 24-53

• “Formatted Output” on page 24-53

Overview of Displaying Results
You can make the analysis results of your custom checks appear
similar to each other with minimal scripting using the Model
Advisor ModelAdvisor.FormatTemplate class, as described in
ModelAdvisor.FormatTemplate. For examples of callback functions using the
ModelAdvisor.FormatTemplate class, see “Simple Check Callback Function”
on page 24-35.

If this format template does not meet your needs, or if you want to format
action results, use the Model Advisor Formatting API, as described in the
following sections.

24-50

Create Callback Functions and Results

Format Model Advisor Results
Use the Model Advisor Formatting API to produce formatted outputs in the
Model Advisor. The following constructors of the ModelAdvisor class provide
the ability to format the output. For more information on each constructor
and associated methods, in the Constructor column, click the link.

Constructor Description

ModelAdvisor.Text Formats element text.

ModelAdvisor.Paragraph Combines elements into paragraphs.

ModelAdvisor.List Creates a list of elements.

ModelAdvisor.LineBreak Adds a line break between elements.

ModelAdvisor.Table Creates a table.

ModelAdvisor.Image Adds an image to the output.

Format Text
Text is the simplest form of output. You can format text in many different
ways. The default text formatting is:

• Empty

• Default color (black)

• Unformatted (not bold, italicized, underlined, linked, subscripted, or
superscripted)

To change text formatting, use the ModelAdvisor.Text constructor. When
you want one type of formatting for all text, use this syntax:

ModelAdvisor.Text(content, {attributes})

When you want multiple types of formatting, you must build the text.

t1 = ModelAdvisor.Text('It is ');

t2 = ModelAdvisor.Text('recommended', {'italic'});

t3 = ModelAdvisor.Text(' to use same font for ');

t4 = ModelAdvisor.Text('blocks', {'bold'});

t5 = ModelAdvisor.Text(' for a uniform appearance in the model.');

24-51

24 Authoring Custom Checks

result = [t1, t2, t3, t4, t5];

Add ASCII and Extended ASCII characters using the MATLAB char
command. For more information, see the ModelAdvisor.Text class page.

Format Lists
You can create two types of lists: numbered and bulleted. The default list
formatting is bulleted. Use the ModelAdvisor.List constructor to create and
format lists (see ModelAdvisor.List). You can create lists with indented
subsections, formatted as either numbered or bulleted.

subList = ModelAdvisor.List();

subList.setType('numbered')

subList.addItem(ModelAdvisor.Text('Sub entry 1', {'pass','bold'}));

subList.addItem(ModelAdvisor.Text('Sub entry 2', {'pass','bold'}));

topList = ModelAdvisor.List();

topList.addItem([ModelAdvisor.Text('Entry level 1',{'keyword','bold'}), subList]);

topList.addItem([ModelAdvisor.Text('Entry level 2',{'keyword','bold'}), subList]);

Format Tables
The default table formatting is:

• Default color (black)

• Left justified

• Bold title, row, and column headings

Change table formatting using the ModelAdvisor.Table constructor. The
following example code creates a subtable within a table.

table1 = ModelAdvisor.Table(1,1);

table2 = ModelAdvisor.Table(2,3);

table2.setHeading('Table 2');

table2.setHeadingAlign('center');

table2.setColHeading(1, 'Header 1');

table2.setColHeading(2, 'Header 2');

table2.setColHeading(3, 'Header 3');

24-52

Create Callback Functions and Results

table1.setHeading('Table 1');

table1.setEntry(1,1,table2);

Format Paragraphs
You must handle paragraphs explicitly because most markup languages do
not support line breaks. The default paragraph formatting is:

• Empty

• Default color (black)

• Unformatted, (not bold, italicized, underlined, linked, subscripted, or
superscripted)

• Aligned left

If you want to change paragraph formatting, use the ModelAdvisor.Paragraph
class.

Formatted Output
The following is the example from “Simple Check Callback Function” on page
24-35, reformatted using the Model Advisor Formatting API.

function result = SampleStyleOneCallback(system)

mdladvObj = Simulink.ModelAdvisor.getModelAdvisor(system);

if strcmp(get_param(bdroot(system), 'ScreenColor'),'white')

result = ModelAdvisor.Text('Passed',{'pass'});

mdladvObj.setCheckResultStatus(true);

else

msg1 = ModelAdvisor.Text(...

['It is recommended to select a Simulink window screen color'...

24-53

24 Authoring Custom Checks

' of white for a readable and printable model. Click ']);

msg2 = ModelAdvisor.Text('here');

msg2.setHyperlink('matlab: set_param(bdroot,''ScreenColor'',''white'')');

msg3 = ModelAdvisor.Text(' to change screen color to white.');

result = [msg1, msg2, msg3];

mdladvObj.setCheckResultStatus(false);

end

24-54

Exclude Blocks From Custom Checks

Exclude Blocks From Custom Checks
To save time during model development and verification, you
might decide to exclude individual blocks from custom checks in a
Model Advisor analysis. By modifying the sl_customization.m
file to include the ModelAdvisor.Check.supportExclusion and
Simulink.ModelAdvisor.filterResultWithExclusion functions, you can
exclude your custom checks from:

• Simulink blocks

• Stateflow charts

This example shows how to exclude blocks from a custom check.

1 At the MATLAB command line, type slvnvdemo_mdladv.

2 In the model window, double-click View demo sl_customization.m.

3 To exclude the custom check Check Simulink block font from
blocks during Model Advisor analysis, make three modifications to the
sl_customization.m file.

a Enable the Check Simulink block font check to support check
exclusions by using the ModelAdvisor.Check.supportExclusion
property. You can now exclude the check from model blocks.
After rec.setInputParametersLayoutGrid([3 2]);, add
rec.supportExclusion = true;. The check 1 section of the function
defineModelAdvisorChecks now looks like:

% --- sample check 1
rec = ModelAdvisor.Check('com.mathworks.sample.Check1');
rec.Title = 'Check Simulink block font';
rec.TitleTips = 'Example style three callback';
rec.setCallbackFcn(@SampleStyleThreeCallback,'None','StyleThree');
rec.setInputParametersLayoutGrid([3 2]);
rec.supportExclusion = true;

b Use the Simulink.ModelAdvisor.filterResultWithExclusion function
to filter model objects causing a check warning or failure with checks
that have exclusions enabled. To do this, there are two locations in the

24-55

24 Authoring Custom Checks

sl_customization.m file to modify, both in the [ResultDescription,
ResultDetails] = SampleStyleThreeCallback(system) function:

• After both instances of searchResult =
mdladvObj.filterResultWithExclusion(searchResult);, add
searchResult = setdiff(allBlks, regularBlks);.

• In the first location, the function now looks like:

% find regular font name blocks
regularBlks = find_system(allBlks,'FontName',regularFontName);

% look for different font blocks in the system
searchResult = setdiff(allBlks, regularBlks);
searchResult = mdladvObj.filterResultWithExclusion(searchResult);
if ~isempty(searchResult)

• In the second location, the function now looks like:

% find regular font size blocks
regularBlks = find_system(allBlks,'FontSize',regularFontSize);
% look for different font size blocks in the system
searchResult = setdiff(allBlks, regularBlks);
searchResult = mdladvObj.filterResultWithExclusion(searchResult);
if ~isempty(searchResult)

4 Save the sl_customization.m file. If you are asked if it is ok to overwrite
the file, click OK.

5 In the model window, double-click Launch Model Advisor.

6 If the By Product folder is not displayed in the Model Advisor window,
select Show By Product Folder from the Settings > Preferences dialog
box.

7 In the left pane of the Model Advisor window, select the By Product >
Demo > Check Simulink block font check. In the right pane, select
Run This Check. The check fails.

8 In the Model Advisor window, click the Enable Model Advisor
highlighting button (). The blocks causing the Check Simulink block
font check failure are highlighted in yellow.

24-56

Exclude Blocks From Custom Checks

9 In the model window, right-click the X block and select Model Advisor
> Exclude block only > Check Simulink block font.

10 In the Model Advisor Exclusion Editor, click OK to create the
exclusion file. Additionally, in the Save Exclusion File as dialog
box, click Save to create an exclusion file with the default name
slvnvdemo_mdladv_exclusions.xml.

11 In the model window, right-click the Input block and selectModel Advisor
> Exclude block only > Check Simulink block font.

12 In the Model Advisor Exclusion Editor, click OK to update the exclusion
file.

13 In the left pane of the Model Advisor window, select the By Product >
Demo > Check Simulink block font check. In the right pane, select
Run This Check. The check now passes. In the right-pane of the Model
Advisor window, you can see the Check Exclusion Rules that the Model
Advisor during the analysis.

14 Close slvnvdemo_mdladv.

Related
Examples

• “Run Model Advisor Checks”
• “Limit Scope of Model Advisor Analysis By Excluding Gain and Outport
Blocks” on page 21-12

Concepts • “Limit the Scope of Model Advisor Analysis” on page 21-3
• “Consult the Model Advisor”
• “Highlight Model Advisor Analysis Results”
• Simulink.ModelAdvisor

24-57

24 Authoring Custom Checks

24-58

25

Create Custom
Configurations by
Organizing Checks and
Folders

• “Create Custom Configurations Basics ” on page 25-2

• “Organize Checks and Folders Using the Model Advisor Configuration
Editor” on page 25-3

• “Organize Checks and Folders Within a Customization File” on page 25-11

• “Verify and Use Custom Configurations” on page 25-21

25 Create Custom Configurations by Organizing Checks and Folders

Create Custom Configurations Basics

In this section...

“About Custom Configurations” on page 25-2

“Create Custom Configurations Workflow” on page 25-2

“Using the Model Advisor Configuration Editor Versus Customization File”
on page 25-2

About Custom Configurations
The Simulink Verification and Validation product allows you to extend the
capabilities of the Model Advisor. Using Model Advisor APIs and the Model
Advisor Configuration Editor, you can:

• Define your own custom checks and write your own callback functions.

• Create custom configurations by organizing checks and folders.

• Create multiple custom configurations that you use for different projects
or modeling guidelines, and switch between these configurations in the
Model Advisor.

Create Custom Configurations Workflow
To create a custom configuration with custom checks and checks MathWorks
provides, see “Create Configurations by Organizing Checks and Folders
Workflow” on page 23-4.

Using the Model Advisor Configuration Editor Versus
Customization File
The Model Advisor Configuration Editor is a GUI that expedites creating
and deploying custom configurations. While you can organize Model Advisor
configurations in a customization file, use the Model Advisor Configuration
Editor to create custom configurations. For more details, see “Organize
Checks and Folders Using the Model Advisor Configuration Editor” on page
25-3.

25-2

Organize Checks and Folders Using the Model Advisor Configuration Editor

Organize Checks and Folders Using the Model Advisor
Configuration Editor

In this section...

“Overview of the Model Advisor Configuration Editor” on page 25-3

“Start the Model Advisor Configuration Editor” on page 25-8

“Organize Checks and Folders Using the Model Advisor Configuration
Editor” on page 25-9

Overview of the Model Advisor Configuration Editor
When you start the Model Advisor Configuration Editor, two windows
open; the Model Advisor Configuration Editor and the Model Advisor Check
Browser. The Configuration Editor window consists of two panes: the Model
Advisor Configuration Editor hierarchy and the Workflow. The Model Advisor
Configuration Editor hierarchy lists the checks and folders in the current
configuration. The Workflow on the right shows the common workflow you
use to create a custom configuration.

25-3

25 Create Custom Configurations by Organizing Checks and Folders

Model Advisor Configuration Editor

When you select a folder or check in the Model Advisor Configuration Editor
hierarchy, the Workflow pane changes to display information about the check
or folder. You can change the display name of the check or folder in this pane.

25-4

Organize Checks and Folders Using the Model Advisor Configuration Editor

The Model Advisor Check Browser window includes a read-only list of
available checks. If you delete a check in the Model Advisor Configuration
Editor, you can retrieve a copy of it from the Model Advisor Check Browser.

Tip If you use a process callback function in a sl_customization file to
hide checks and folders, the Model Advisor Configuration Editor and Model
Advisor Check Browser do not display the hidden checks and folders. For a
complete list of checks and folders, remove process callback functions and
update the Simulink environment (see “Update the Environment to Include
Your sl_customization File” on page 25-21).

25-5

25 Create Custom Configurations by Organizing Checks and Folders

Model Advisor Check Browser

Using the Model Advisor Configuration Editor, you can perform the following
actions.

To... Select...

Create new configurations File > New

Find checks and folders in the Model Advisor
Check Browser

View > Check Browser

Add checks and folders to the configuration Edit > Copy
Edit > Paste
Edit > New folder
The check or folder and drag and drop

Remove checks and folders from the
configuration

Edit > Delete
Edit > Cut

25-6

Organize Checks and Folders Using the Model Advisor Configuration Editor

To... Select...

Reorder checks and folders Edit > Move up
Edit > Move down
The check or folder and drag and drop

Rename checks and folders

Note The MathWorks folder display names
are restricted. When you rename a folder, you
cannot use the restricted display names.

The check or folder and edit Display Name
in right pane.

Allow or gray out the check box control for
checks and folders

Tip This capability is equivalent to enabling
checks, described in “Display and Enable
Checks” on page 24-25.

Edit > Enable
Edit > Disable

Save the configuration as a MAT file for use
and distribution

File > Save
File > Save As

Set the configuration so it opens by default in
the Model Advisor

File > Set Current Configuration as
Default

Restore the MathWorks default configuration File > Restore Default Configuration

Load and edit saved configurations File > Open

25-7

25 Create Custom Configurations by Organizing Checks and Folders

Start the Model Advisor Configuration Editor

Note

• Before starting the Model Advisor Configuration Editor, verify that the
current folder is writable. If the folder is not writable, you see an error
message when you start the Model Advisor Configuration Editor.

• The Model Advisor Configuration Editor uses the Simulink project (slprj)
folder (for details about storing reports and other relevant information,
see “Model Reference Simulation Targets”) in the current folder. If this
folder does not exist in the current folder, the Model Advisor Configuration
Editor creates it.

1 To include custom checks in the new Model Advisor configuration, update
the Simulink environment to include your sl_customization.m file.
For more information, see “Update the Environment to Include Your
sl_customization File” on page 25-21.

2 Start the Model Advisor Configuration Editor.

To start the
Model Advisor
Configuration
Editor...

Do this:

Programmatically At the MATLAB command line, enter
Simulink.ModelAdvisor.openConfigUI.
For more information, see the
Simulink.ModelAdvisor function reference
page.

From the Model
Advisor

1 Start the Model Advisor.
2 Select File > Open Configuration Editor.

The Model Advisor Configuration Editor and Model Advisor Check Browser
windows open.

25-8

Organize Checks and Folders Using the Model Advisor Configuration Editor

3 Optionally, to edit an existing configuration in the Model Advisor
Configuration Editor window:

a Select File > Open.

b In the Open dialog box, navigate to the configuration file that you want
to edit.

c Click Open.

Organize Checks and Folders Using the Model
Advisor Configuration Editor
The following tutorial steps you through creating a custom configuration.

1 Open the Model Advisor Configuration Editor at the MATLAB command
line by entering Simulink.ModelAdvisor.openConfigUI . For more
options, see “Start the Model Advisor Configuration Editor” on page 25-8.

2 In the Model Advisor Configuration Editor, in the left pane, delete the By
Product and By Task folders, to start with a blank configuration.

3 Select the root node which is labeled Model Advisor Configuration Editor.

4 In the toolbar, click the New Folder button to create a folder.

5 In the left pane, select the new folder.

6 In the right pane, edit Display Name to rename the folder. For the
purposes of this tutorial, rename the folder to Review Optimizations.

7 In the Model Advisor Check Browser window, in the Find field, enter
optimization to find Simulink > Check optimization settings.

8 Drag and drop Check optimization settings into Review
Optimizations.

9 In the Model Advisor Check Browser window, find
Simulink Verification and Validation > Modeling
Standards > DO-178C/DO-331Checks > Check safety-related
optimization settings.

25-9

25 Create Custom Configurations by Organizing Checks and Folders

10 Drag and drop Check safety-related optimization settings into
Review Optimizations.

11 In the Model Advisor Configuration Editor window, expand Review
Optimizations.

12 Rename Check optimization settings to Check Simulink
optimization settings.

13 Select File > Save As to save the configuration.

14 Name the configuration optimization_configuration.mat.

15 Close the Model Advisor Configuration Editor window.

Tip To move a check to the first position in a folder:

1 Drag the check to the second position.

2 Right-click the check and select Move up.

25-10

Organize Checks and Folders Within a Customization File

Organize Checks and Folders Within a Customization File

In this section...

“Customization File Overview” on page 25-11

“Register Tasks and Folders” on page 25-12

“Define Custom Tasks” on page 25-14

“Define Custom Folders” on page 25-17

“Customization Example” on page 25-19

Note While you can organize checks and folders within a customization
file, use the Model Advisor Configuration Editor. For more information, see
“Using the Model Advisor Configuration Editor Versus Customization File”
on page 25-2.

Customization File Overview
The sl_customization.m file contains a set of functions for registering and
defining custom checks, tasks, and groups. To set up the sl_customization.m
file, follow the guidelines in this table.

Function Description Required or Optional

sl_customization() Registers custom checks,
tasks, folders, and
callbacks with the Simulink
customization manager at
startup (see “Register Checks
and Process Callbacks” on
page 24-18).

Required for customizations to
the Model Advisor.

One or more check definitions Defines custom checks (see
“Define Custom Checks” on
page 24-23).

Required for custom checks
and to add custom checks to
the By Product folder.

25-11

25 Create Custom Configurations by Organizing Checks and Folders

Function Description Required or Optional

One or more task definitions Defines custom tasks (see
“Define Custom Tasks” on
page 25-14).

Required to add custom checks
to the Model Advisor, except
when adding the checks to the
By Product folder. Write one
task for each check that you
add to the Model Advisor.

One or more groups Defines custom groups (see
“Define Custom Tasks” on
page 25-14).

Required to add custom tasks
to new folders in the Model
Advisor, except when adding
a new subfolder to the By
Product folder. Write one
group definition for each new
folder.

One process callback function Specifies actions that
Simulink performs at startup
and post-execution time
(see “Define Startup and
Post-Execution Actions Using
Process Callback Functions”
on page 24-20).

Optional.

If the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

Register Tasks and Folders

• “Create sl_customization Function” on page 25-12

• “Register Tasks and Folders” on page 25-13

• “Register Custom Tasks and Folders” on page 25-14

Create sl_customization Function
To add tasks and folders to the Model Advisor, create the sl_customization.m
file on your MATLAB path. Then create the sl_customization() function in
the sl_customization.m file on your MATLAB path.

25-12

Organize Checks and Folders Within a Customization File

Tip

• You can have more than one sl_customization.m file on your MATLAB
path.

• Do not place an sl_customization.m file that customizes the Model
Advisor in your root MATLAB folder or its subfolders, except for the
matlabroot/work folder. Otherwise, the Model Advisor ignores the
customizations that the file specifies.

The sl_customization function accepts one argument, a customization
manager object, as in this example:

function sl_customization(cm)

The customization manager object includes methods for registering custom
checks, tasks, folders, and process callbacks. Use these methods to register
customizations specific to your application, as described in the sections that
follow.

Register Tasks and Folders
The customization manager provides the following methods for registering
custom tasks and folders:

• addModelAdvisorTaskFcn (@factorygroupDefinitionFcn)

Registers the tasks that you define in factorygroupDefinitionFcn to the
By Task folder of the Model Advisor.

The factorygroupDefinitionFcn argument is a handle to the function
that defines the checks to add to the Model Advisor as instances of the
ModelAdvisor.FactoryGroup class (see “Define Custom Tasks” on page
25-14).

• addModelAdvisorTaskAdvisorFcn (@taskDefinitionFcn)

Registers the tasks and folders that you define in taskDefinitionFcn
to the folder in the Model Advisor that you specify using the
ModelAdvisor.Root.publish method or the ModelAdvisor.Group class.

25-13

25 Create Custom Configurations by Organizing Checks and Folders

The taskDefinitionFcn argument is a handle to the function that
defines custom tasks and folders. Simulink adds the checks and
folders to the Model Advisor as instances of the ModelAdvisor.Task or
ModelAdvisor.Group classes (see “Define Custom Tasks” on page 25-14).

Note The @ sign defines a function handle that MATLAB calls. For more
information, see “At — @” in the MATLAB documentation.

Register Custom Tasks and Folders
The following code example registers custom tasks and folders:

function sl_customization(cm)

% register custom factory group

cm.addModelAdvisorTaskFcn(@defineModelAdvisorTasks);

% register custom tasks.

cm.addModelAdvisorTaskAdvisorFcn(@defineTaskAdvisor);

Note If you add custom checks and process callbacks within the
sl_customization.m file, include methods for registering the checks and
process callbacks in the sl_customization function. For more information,
see “Register Checks and Process Callbacks” on page 24-18.

Define Custom Tasks

• “Add Check to Custom or Multiple Folders Using Tasks” on page 25-15

• “Create Custom Tasks Using MathWorks Checks” on page 25-15

• “Display and Enable Tasks” on page 25-16

• “Define Where Tasks Appear” on page 25-16

• “Task Definition Function” on page 25-16

25-14

Organize Checks and Folders Within a Customization File

Add Check to Custom or Multiple Folders Using Tasks
You can use custom tasks for adding checks to the Model Advisor, either
in multiple folders or in a single, custom folder. You define custom tasks
in one or more functions that specify the properties of each instance of the
ModelAdvisor.Task class. Define one instance of this class for each custom
task that you want to add to the Model Advisor. Then register the custom
task, as described in “Register Tasks and Folders” on page 25-12. The
following sections describe how to define custom tasks.

To add a check to multiple folders or a single, custom folder:

1 Create a check using the ModelAdvisor.Check class, as described in
“Define Custom Checks” on page 24-23.

2 Register a task wrapper for the check, as described in “Register Tasks
and Folders” on page 25-12.

3 If you want to add the check to folders that are not already present, register
and create the folders using the ModelAdvisor.Group class.

4 Add a check to the task using the ModelAdvisor.Task.setCheck method.

5 Add the task to each folder using the ModelAdvisor.Group.addTask
method and the task ID.

Create Custom Tasks Using MathWorks Checks
You can add MathWorks checks to your custom folders by defining the checks
as custom tasks. When you add the checks as custom tasks, you identify
checks by the check ID.

To find MathWorks check IDs:

1 In the Model Advisor, select View > Source Tab.

2 Navigate to the folder that contains the MathWorks check.

3 In the right pane, click Source. The Model Advisor displays the Title,
TitleID, and Source information for each check in the folder.

4 Select and copy the TitleID of the check that you want to add as a task.

25-15

25 Create Custom Configurations by Organizing Checks and Folders

Display and Enable Tasks
The Visible, Enable, and Value properties interact the same way for tasks
as they do for checks (see “Display and Enable Checks” on page 24-25).

Define Where Tasks Appear
You can specify where the Model Advisor places tasks within the Model
Advisor using the following guidelines:

• To place a task in a new folder in theModel Advisor Task Manager, use
the ModelAdvisor.Group class. See “Define Custom Folders” on page 25-17.

• To place a task in a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class. See “Define Custom Folders” on page
25-17.

Task Definition Function
The following is an example of a task definition function. This function
defines three tasks. The tasks are derived from the checks defined in “Check
Definition Function” on page 24-27.

For an example of placing these tasks into a custom group, see “Group
Definition” on page 25-18.

% Defines Model Advisor tasks and a custom folder

% Add checks to a custom folder using task definitions

function defineTaskAdvisor

mdladvRoot = ModelAdvisor.Root;

% Define task that uses Sample Check 1: Informational check

MAT1 = ModelAdvisor.Task('mathworks.example.task.configManagement');

MAT1.DisplayName = 'Informational check for model configuration management';

MAT1.Description = 'Display model configuration and checksum information.';

setCheck(MAT1, 'mathworks.example.configManagement');

mdladvRoot.register(MAT1);

% Define task that uses Sample Check 2: Basic Check with Pass/Fail Status

MAT2 = ModelAdvisor.Task('mathworks.example.task.unconnectedObjects');

MAT2.DisplayName = 'Check for unconnected objects';

setCheck(MAT2, 'mathworks.example.unconnectedObjects');

25-16

Organize Checks and Folders Within a Customization File

MAT2.Description = ['Identify unconnected lines, input ports, and output ' ...

'ports in the model or subsystem.'];

mdladvRoot.register(MAT2);

% Define task that uses Sample Check 3: Check with Subresults and Actions

MAT3 = ModelAdvisor.Task('mathworks.example.task.optimizationSettings');

MAT3.DisplayName = 'Check safety-related optimization settings';

MAT3.Description = ['Check model configuration for optimization ' ...

'settings that can impact safety.'];

MAT3.setCheck('mathworks.example.optimizationSettings');

mdladvRoot.register(MAT3);

% Custom folder definition

MAG = ModelAdvisor.Group('mathworks.example.ExampleGroup');

MAG.DisplayName = 'My Group';

% Add tasks to My Group folder

addTask(MAG, MAT1);

addTask(MAG, MAT2);

addTask(MAG, MAT3);

% Add My Group folder to the Model Advisor under 'Model Advisor' (root)

mdladvRoot.publish(MAG);

Define Custom Folders

• “About Custom Folders” on page 25-17

• “Add Custom Folders” on page 25-18

• “Define Where Custom Folders Appear” on page 25-18

• “Group Definition” on page 25-18

About Custom Folders
Use folders to group checks in the Model Advisor by functionality or usage.
You define custom folders in:

• A factory group definition function that specifies the properties of each
instance of the ModelAdvisor.FactoryGroup class.

• A task definition function that specifies the properties of each instance of
the ModelAdvisor.Group class. For more information about task definition

25-17

25 Create Custom Configurations by Organizing Checks and Folders

functions, see “Add Check to Custom or Multiple Folders Using Tasks” on
page 25-15.

Define one instance of the group classes for each folder that you want to
add to the Model Advisor. Then register the custom folder, as described in
“Register Tasks and Folders” on page 25-12. The following sections describe
how to define custom groups.

Add Custom Folders
To add a custom folder:

1 Create the folder using the ModelAdvisor.Group or
ModelAdvisor.FactoryGroup classes.

2 Add the folder to the Model Advisor, as described in “Define Custom
Folders” on page 25-17.

Define Where Custom Folders Appear
You can specify the location of custom folders within the Model Advisor using
the following guidelines:

• To define a new folder in the Model Advisor Task Manager, use the
ModelAdvisor.Group class.

• To define a new folder in the By Task folder, use the
ModelAdvisor.FactoryGroup class.

Note To define a new folder in the By Product folder, use the
ModelAdvisor.Root.publish method within a custom check. For more
information, see “Define Where Custom Checks Appear” on page 24-26. If
the By Product folder is not displayed in the Model Advisor window, select
Show By Product Folder from the Settings > Preferences dialog box.

Group Definition
The following is an example of a group definition. The definition places the
tasks defined in “Task Definition Function” on page 25-16 inside a folder

25-18

Organize Checks and Folders Within a Customization File

called My Group under the Model Advisor root. The task definition
function includes this group definition.

% Custom folder definition

MAG = ModelAdvisor.Group('mathworks.example.ExampleGroup');

MAG.DisplayName='My Group';

% Add tasks to My Group folder

MAG.addTask(MAT1);

MAG.addTask(MAT2);

MAG.addTask(MAT3);

% Add My Group folder to the Model Advisor under 'Model Advisor' (root)

mdladvRoot.publish(MAG);

The following is an example of a factory group definition function. The
definition places the checks defined in “Check Definition Function” on page
24-27 into a folder called Demo Factory Group inside of the By Task folder.

function defineModelAdvisorTasks

mdladvRoot = ModelAdvisor.Root;

% --- sample factory group

rec = ModelAdvisor.FactoryGroup('com.mathworks.sample.factorygroup');

rec.DisplayName='Demo Factory Group';

rec.Description='Demo Factory Group';

rec.addCheck('mathworks.example.configManagement');

rec.addCheck('mathworks.example.unconnectedObjects');

rec.addCheck('mathworks.example.optimizationSettings');

mdladvRoot.publish(rec); % publish inside By Task

Customization Example
The Simulink Verification and Validation software provides an example that
shows how to customize the Model Advisor by adding:

• Custom checks

• Check input parameters

• Check actions

• Check list views to call the Model Advisor Result Explorer

• Custom tasks to include the custom checks in the Model Advisor

25-19

25 Create Custom Configurations by Organizing Checks and Folders

• Custom folders for grouping the checks

• Custom procedures

• A process callback function

The example also provides the source code of the sl_customization.m file
that executes the customizations.

To run the example:

1 At the MATLAB command line, type slvnvdemo_mdladv.

2 Follow the instructions in the model.

25-20

Verify and Use Custom Configurations

Verify and Use Custom Configurations

In this section...

“Update the Environment to Include Your sl_customization File” on page
25-21

“Verify Custom Configurations” on page 25-21

Update the Environment to Include Your
sl_customization File
When you start Simulink, it reads customization (sl_customization.m)
files. If you change the contents of your customization file, update your
environment by performing these tasks:

1 If you previously started the Model Advisor:

a Close the model from which you started the Model Advisor

b Clear the data associated with the previous Model Advisor session by
removing the slprj folder from your working folder.

2 At the MATLAB command line, enter:

sl_refresh_customizations

3 Open your model.

4 Start the Model Advisor.

Verify Custom Configurations
To verify a custom configuration:

1 If you created custom checks, or created the custom configuration using
the sl_customization method, update the Simulink environment.
For more information, see “Update the Environment to Include Your
sl_customization File” on page 25-21.

2 Open a model.

3 From the model window, start the Model Advisor.

25-21

25 Create Custom Configurations by Organizing Checks and Folders

4 Select File > Load Configuration. If you see a warning that the Model
Advisor report corresponds to a different configuration, click Load to
continue.

5 In the Open dialog box, navigate to and select your custom configuration.
For example, if you created the custom configuration in “Organize Checks
and Folders Using the Model Advisor Configuration Editor” on page 25-9,
select optimization_configuration.mat.

6 When the Model Advisor reopens, verify that the configuration contains
the new folders and checks. For example, the Review Optimizations
folder and the Check Simulink optimization settings and Check
safety-related optimization settings checks.

7 Optionally, run the checks.

25-22

26

Create Procedural-Based
Model Advisor
Configurations

• “Overview of Procedural-Based Model Advisor Configurations” on page 26-2

• “Create Procedures” on page 26-3

• “Create a Procedural-Based Configuration” on page 26-7

26 Create Procedural-Based Model Advisor Configurations

Overview of Procedural-Based Model Advisor
Configurations

You can create a procedural-based configuration that allows you to specify
the order in which you make changes to your model. You organize checks
into procedures using the procedures API. A check in a procedure does not
run until the previous check passes. A procedural-based configuration runs
until a check fails, requiring you to modify the model to pass the check and
proceed to the next check. Changes you make to your model to pass the checks
therefore follow a specific order.

Create Procedural-Based Configurations
For the workflow to create procedural-based configurations, see “Create
Procedural-Based Configurations ” on page 23-5.

26-2

Create Procedures

Create Procedures

In this section...

“What Is a Procedure?” on page 26-3

“Create Procedures Using the Procedures API” on page 26-3

“Define Procedures” on page 26-3

What Is a Procedure?
A procedure is a series of checks. The checks in a procedure depend on passing
the previous checks. If Check A is the first check in a procedure and Check
B follows, the Model Advisor does not run Check B until Check A passes.
Checks A and B can be either custom or provided by MathWorks.

You create procedures with the ModelAdvisor.Procedure class API. You
first add the checks to tasks, which are wrappers for the checks. The tasks
are added to procedures. See “Create Procedures Using the Procedures API”
on page 26-3.

When creating procedural checks, be aware of potential conflicts with the
checks. Verify that it is possible to pass both checks.

Create Procedures Using the Procedures API
You use the ModelAdvisor.Procedure class to create procedural checks.

1 Add each check to a task using the ModelAdvisor.Task.setCheck method.
The task is a wrapper for the check. You cannot add checks directly to
procedures. For more information, see “Define Custom Tasks” on page
25-14.

2 Add each task to a procedure using the ModelAdvisor.Procedure.addTask
method.

Define Procedures
You define procedures in a procedure definition function that specifies
the properties of each instance of the ModelAdvisor.Procedure class.

26-3

26 Create Procedural-Based Model Advisor Configurations

Define one instance of the procedure class for each procedure that you
want to add to the Model Advisor. Then register the procedure using the
ModelAdvisor.Root.register method.

Add Subprocedures and Tasks to Procedures
You can add subprocedures or a tasks to a procedure. The tasks are wrappers
for checks.

• Use the ModelAdvisor.Procedure.addProcedure method to add a
subprocedure to a procedure.

• Use the ModelAdvisor.Procedure.addTask method to add a task to a
procedure.

Define Where Procedures Appear
You can specify where the Model Advisor places a procedure using the
ModelAdvisor.Group.addProcedure method.

Procedure Definition
The following code example adds procedures to a group:

%Create three procedures
MAP1=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure1');
MAP2=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure2');
MAP3=ModelAdvisor.Procedure('com.mathworks.sample.myProcedure3');

%Create a group
MAG = ModelAdvisor.Group('com.mathworks.sample.myGroup');

%Add the three procedures to the group
addProcedure(MAG, MAP1);
addProcedure(MAG, MAP2);
addProcedure(MAG, MAP3);

%register the group and and procedures
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAG);
mdladvRoot.register(MAP1);

26-4

Create Procedures

mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

The following code example adds subprocedures to a procedure:

%Create a procedures
MAP = ModelAdvisor.Procedure('com.mathworks.example.Procedure');

%Create 3 sub procedures
MAP1=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub1');
MAP2=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub2');
MAP3=ModelAdvisor.Procedure('com.mathworks.example.procedure_sub3');

%Add sub procedures to procedure
addProcedure(MAP, MAP1);
addProcedure(MAP, MAP2);
addProcedure(MAP, MAP3);

%register the procedures
mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAP1);
mdladvRoot.register(MAP2);
mdladvRoot.register(MAP3);

The following code example adds tasks to a procedure:

%Create three tasks
MAT1=ModelAdvisor.Task('com.mathworks.tasksample.myTask1');
MAT2=ModelAdvisor.Task('com.mathworks.tasksample.myTask2');
MAT3=ModelAdvisor.Task('com.mathworks.tasksample.myTask3');

%Create a procedure
MAP = ModelAdvisor.Procedure('com.mathworks.tasksample.myProcedure');

%Add the three tasks to the procedure
addTask(MAP, MAT1);
addTask(MAP, MAT2);
addTask(MAP, MAT3);

%register the procedure and tasks

26-5

26 Create Procedural-Based Model Advisor Configurations

mdladvRoot = ModelAdvisor.Root;
mdladvRoot.register(MAP);
mdladvRoot.register(MAT1);
mdladvRoot.register(MAT2);
mdladvRoot.register(MAT3);

26-6

Create a Procedural-Based Configuration

Create a Procedural-Based Configuration
In this example, you examine a procedural-based configuration.

1 At the MATLAB command line, type slvnvdemo_mdladv.

2 In the Simulink model window, select View demo sl_customization.m.
The sl_customization.m file opens in the MATLAB Editor window.

The file contains three checks created in the function
defineModelAdvisorChecks:

• ModelAdvisor.Check('com.mathworks.sample.Check1') - Checks
Simulink block fonts.

• ModelAdvisor.Check('com.mathworks.sample.Check2') - Checks
Simulink window screen color.

• ModelAdvisor.Check('com.mathworks.sample.Check3') - Checks
model optimization settings.

Each check has a set of fix actions.

3 In the sl_customization.m file, examine the function defineTaskAdvisor.

• The ModelAdvisor.Procedure class API creates procedures My
Procedure and My sub_Procedure:

% Define procedures

MAP = ModelAdvisor.Procedure('com.mathworks.sample.ProcedureSample');

MAP.DisplayName='My Procedure';

MAP_sub = ModelAdvisor.Procedure('com.mathworks.sample.sub_ProcedureSample');

MAP_sub.DisplayName='My sub_Procedure';

• The ModelAdvisor.Task class API creates tasks MAT4, MAT5, and MAT6.
The ModelAdvisor.Task.setCheck method adds the checks to the tasks:

% Define tasks

MAT4 = ModelAdvisor.Task('com.mathworks.sample.TaskSample4');

MAT4.DisplayName='Check Simulink block font';

MAT4.setCheck('com.mathworks.sample.Check1');

mdladvRoot.register(MAT4);

26-7

26 Create Procedural-Based Model Advisor Configurations

MAT5 = ModelAdvisor.Task('com.mathworks.sample.TaskSample5');

MAT5.DisplayName='Check Simulink window screen color';

MAT5.setCheck('com.mathworks.sample.Check2');

mdladvRoot.register(MAT5);

MAT6 = ModelAdvisor.Task('com.mathworks.sample.TaskSample6');

MAT6.DisplayName='Check model optimization settings';

MAT6.setCheck('com.mathworks.sample.Check3');

mdladvRoot.register(MAT6);

• The ModelAdvisor.Procedure.addTask method adds task MAT4
to My Procedure and tasks MAT5 and MAT6 to My sub_Procedure.
The ModelAdvisor.Procedure.addProcedure method adds My
sub_Procedure to My Procedure:

% Add tasks to procedures:

% Add Task4 to MAP

MAP.addTask(MAT4);

% Now Add Task5 and Task6 to MAP_sub

MAP_sub.addTask(MAT5);

MAP_sub.addTask(MAT6);

% Include the Sub-Procedure in the Procedure

MAP.addProcedure(MAP_sub);

4 From the model window, selectAnalysis > Model Advisor > Model
Advisor to open the Model Advisor.

5 A System Selector — Model Advisor dialog box opens. Click OK. The
Model Advisor window opens. It might take a few minutes to open.

6 In the left pane, expand My Procedure > My sub_Procedure. The
Check Simulink block font check is in the My Procedure folder. My
sub_Procedure contains Check Simulink window screen color and Check
model optimization settings.

26-8

Create a Procedural-Based Configuration

7 In the left pane of the Model Advisor, select My Procedure. In the right
pane of the Model Advisor, click Run to Failure. The Model Advisor
Check Simulink block font check fails. The Model Advisor does not check
the remaining two checks in the My sub_Procedure folder. Running the
checks in the My sub_Procedure folder is dependent on passing the Check
Simulink block font check.

8 In the Action section of the Model Advisor dialog box, click Fix block
fonts.

9 In the left pane of the Model Advisor, select My Procedure. In the right pane
of the Model Advisor, click Run to Failure. The Check Simulink block font
check passes. The Model Advisor runs the Check Simulink window screen
color check. This check fails and the Model Advisor stops checking.

10 In the Action section of the Model Advisor dialog box, click Fix window
screen color.

11 In the left pane of the Model Advisor, select My sub_Procedure. In the right
pane of the Model Advisor, click Run to Failure. The Check Simulink
window screen color check passes. The Model Advisor runs the Check
model optimization settings check. This check warns.

12 In the Action section of the Model Advisor dialog box, click Fix model
optimization settings.

26-9

26 Create Procedural-Based Model Advisor Configurations

13 In the left pane of the Model Advisor, select Check model optimization
settings. In the right pane of the Model Advisor, click Run This Task. The
Check model optimization settings check passes.

26-10

27

Deploy Custom
Configurations

• “Overview of Deploying Custom Configurations” on page 27-2

• “How to Deploy Custom Configurations” on page 27-3

• “Manually Load and Set the Default Configuration” on page 27-4

• “Automatically Load and Set the Default Configuration” on page 27-5

27 Deploy Custom Configurations

Overview of Deploying Custom Configurations

In this section...

“About Deploying Custom Configurations” on page 27-2

“Deploying Custom Configurations Workflow” on page 27-2

About Deploying Custom Configurations
When you create a custom configuration, often you deploy the custom
configuration to your development group. Deploying the custom configuration
allows your development group to review models using the same checks.

After you create a custom configuration, you can use it in the Model
Advisor, or deploy the configuration to your users. You can deploy custom
configurations whether you created the configuration using the Model Advisor
Configuration Editor or within the customization file.

Deploying Custom Configurations Workflow
When you deploy custom configurations, you:

1 Optionally author custom checks, as described in “Authoring Checks”.

2 Organize checks and folders to create custom configurations, as described
in “Create Custom Configurations Basics ” on page 25-2.

3 Deploy the custom configuration to your users, as described in “How to
Deploy Custom Configurations” on page 27-3.

27-2

How to Deploy Custom Configurations

How to Deploy Custom Configurations
To deploy a custom configuration:

1 Determine which files to distribute. You might need to distribute more
than one file.

If You... Using the... Distribute...

Created custom checks Customization file • sl_customization.m

• Files containing
check and action
callback functions
(if separate)

Model Advisor
Configuration Editor

Configuration MAT
file

Organized checks and
folders

Customization file sl_customization.m

2 Distribute the files and tell the user to include these files on the MATLAB
path.

3 Instruct the user to load the custom configuration. For more details,
see “Manually Load and Set the Default Configuration” on page 27-4 or
“Automatically Load and Set the Default Configuration” on page 27-5.

27-3

27 Deploy Custom Configurations

Manually Load and Set the Default Configuration
When you use the Model Advisor, you can load any configuration. Once
you load a configuration, you can set it so that the Model Advisor use that
configuration every time you open the Model Advisor.

1 Open the Model Advisor.

2 Select File > Load Configuration.

3 In the Open dialog box, navigate to and select the configuration file that
you want to edit.

4 Click Open.

Simulink reloads the Model Advisor using the new configuration.

5 Optionally, when the Model Advisor opens, set the current configuration as
the default by selecting File > Set Current Configuration as Default.

27-4

Automatically Load and Set the Default Configuration

Automatically Load and Set the Default Configuration
When you use the Model Advisor, you can automatically set the default
configuration by modifying an sl_customization.m file. For more
information on creating the sl_customization.m file, see “Register Checks
and Process Callbacks” on page 24-18.

1 Place a configuration MAT file on your MATLAB path. For more
information on MAT files, see “Organize Checks and Folders Using the
Model Advisor Configuration Editor” on page 25-3

2 Modify your sl_customization.m file by adding the function:

function [checkCellArray taskCellArray] = ModelAdvisorProcessFunction ...

(stage, system, checkCellArray, taskCellArray)

switch stage

case 'configure'

ModelAdvisor.setConfiguration('qeAPIConfigFilePath.mat');

end

In the function, replace qeAPIConfigFilePath.mat with the name of the
configuration MAT file in step 1.

3 The sl_customization.m file is loaded every time you start the Model
Advisor, using qeAPIConfigFilePath.mat as the default configuration.
For more information, see “Update the Environment to Include Your
sl_customization File” on page 25-21.

Tip You can restore the MathWorks default configuration by selecting
File > Restore Default Configuration.

27-5

27 Deploy Custom Configurations

27-6

Index

IndexSymbols and Numerics
1-D Lookup Table block

model coverage for 15-19
2-D Lookup Table block

model coverage for 15-19

A
Abs block

model coverage for 15-5
ActiveX controls

deleting from Microsoft Excel 2007
documents 7-22

deleting from Microsoft Excel 2010
documents 7-23

enabling, in the Microsoft Office Trust
Center 7-18

field codes 7-18
RMI use in requirements documents 8-23
troubleshooting 7-16

Add block
model coverage for 15-29

annotations
linking to requirements from 2-52

atomic subcharts
model coverage for 17-60

B
Bias block

model coverage for 15-6
block reduction

model coverage and 14-10
blocks

filtering from coverage recording 19-21
library linked

coverage 15-18
linear system modeling 12-6

bookmarks
creating, in requirements documents 2-25

C
charts

library linked
coverage 15-18

Check Static Lower Bound block
checking for out-of-bounds signal 12-3 13-17

closing Signal Builder Requirements pane 13-8
colored diagram model coverage display

enabling 17-6
Combinatorial Logic block

model coverage for 15-7
component verification

approaches 10-2
common workflow 10-4
example 11-1
functions for 10-9
independently of container model 10-6
Model blocks, in container model 10-7
tools for 10-2

components
verifying. See component verification

condition coverage 17-46
definition 17-46
description 14-4
example 17-55
MATLAB Function blocks 17-35
statements in MATLAB Function

block 17-23
truth tables 17-67

conditional input branch execution
model coverage and 14-11

coverage 14-2
filter rules 19-3
filtering model objects from 19-2
filters 19-3
objects to filter from 19-4
See also model coverage

coverage filter rules
adding rationale to 19-6
creating 19-7

Index-1

Index

creating new 19-5
editing 19-5
for filtering 19-3
removing from a model 19-9
types 19-5
using Coverage Filter Viewer to

manage 19-10
viewing 19-8

Coverage Filter Viewer
managing coverage filter rules with 19-10

coverage filtering
library reference blocks 19-19
overview 19-2
Simulink blocks 19-21
Stateflow temporal events 19-15
Stateflow transitions 19-13
subsystems 19-20
typical workflow 19-5
when to use 19-2

coverage filters
attaching to a file 19-8
removing from a model 19-9
rules in 19-3
saving to a file 19-7
viewing 19-8

Coverage Settings dialog box 17-3
accessing 16-2
Coverage tab 16-2
Filter tab 16-16
Options tab 16-13
Reporting tab 16-8
Results tab 16-6

cvhtml function
model coverage 20-12

cvload function
model coverage 20-14

cvsave function
model coverage 20-13

cvsim function
model coverage 20-6

cvtest function
model coverage 20-3

cyclomatic complexity
description 14-3
in model coverage reports 17-41

D
Data Type Conversion block

model coverage for 15-7
Dead Zone block

model coverage for 15-8
debugging

model coverage 17-40
decision coverage 17-42

chart as a triggered block 17-43
chart containing substates 17-43
conditional transitions 17-46
description 14-4
example 17-55
in model coverage reports 17-42
MATLAB Function blocks 17-35
state with on event_name statement 17-46
statements in MATLAB Function

blocks 17-22
superstates containing substates 17-43
truth tables 17-67

defining Model Advisor checks 24-23
defining Model Advisor folders 25-17
defining Model Advisor tasks 25-14
Design Requirements report 4-24
Direct Lookup Table (n-D) block

model coverage for 15-9
disabling Model Verification blocks across test

groups 13-13
Discrete Filter block

model coverage for 15-10
Discrete FIR Filter block

model coverage for 15-10
Discrete Transfer Fcn block

Index-2

Index

model coverage for 15-12
Discrete-Time Integrator block

model coverage for 15-10
document index

using Requirements dialog box to
display 2-15

DOORS Requirements Management Interface
block type descriptions 6-13
creating links to 2-32
definition for object 6-2
from Simulink to DOORS 6-19
hierarchical numbers 6-13
inserting navigation objects into 7-6
navigating between model and 7-9
object identifiers 6-13
opening the object in Simulink, Stateflow, or

MATLAB 6-20
overview 7-2
saving formal modules 6-17
synchronizing models with DOORS 6-5
synchronizing objects with DOORS formal

module 6-5
viewing requirements 6-18

DOORS software
installing 7-3
manual installation 7-3

Dot Product block
model coverage for 15-12

E
Enabled and Triggered Subsystem block

model coverage for 15-13
Enabled Subsystem block

model coverage for 15-13
enabling Model Verification blocks across test

groups 13-13
examples

Model Advisor customization example 25-19
simcovdemo model coverage example 17-2

external storage for requirements links
adding 3-5
deleting 3-5
enabling 3-4
guidelines for using 3-3
how it works 3-2
loading links from 3-6
modifying 3-5
moving links from model to 3-7
moving links to model from 3-8
saving 3-5
when to use 2-5

F
Fcn block

model coverage for 15-15
field codes

requirements in Microsoft Word 7-18
filtering

requirements 4-25
settings for 4-30

For Iterator block
model coverage for 15-15

For Iterator Subsystem block
model coverage for 15-15

formal modules
creating links to surrogate modules during

synchronization 6-7

G
Gain block

model coverage for 15-16

H
highlighting

requirements in a model 4-2

Index-3

Index

I
icons for Model Verification blocks in Verification

Manager 13-9
If Action Subsystem block

model coverage for 15-16
If block

model coverage for 15-16
inlined parameters

model coverage and 14-10
instances

of library blocks 5-19
internal storage for requirements links

enabling 3-4
Interpolation Using Prelookup block

model coverage for 15-17

L
library blocks

filtering from coverage recording 19-19
requirements links to 5-24
with requirements, copying 5-20

linear system modeling blocks 12-6
linked libraries

requirements in 5-19
linking

between DOORS and Simulink 7-4
customizing navigation objects for 7-7 7-14
enabling from Microsoft® Office

documents 7-11
Logical Operator block

model coverage for 15-18
Lookup Table block

in model coverage report 18-29
model coverage

n-dimensional 18-34
three-dimensional example 18-32
two-dimensional example 18-29

lookup table coverage
description 14-6

M
Math Function block

model coverage for 15-21
MATLAB Function block

condition coverage 17-35
condition coverage statements 17-23
decision coverage 17-35
decision coverage statements 17-22
MCDC coverage 17-35
MCDC coverage statements 17-23
model coverage examples 17-25
model coverage for 15-22
model coverage for Simulink Design Verifier

functions 15-28 17-23
types of model coverage 17-22

MATLAB functions
model coverage 17-22
model coverage reports 18-18
Simulink Design Verifier coverage for 14-8

MCDC coverage
definition 17-47
description 14-4
example 17-55
explanation 17-57
irrelevant conditions 17-58
MATLAB Function blocks 17-35
specifying 17-41
statements in MATLAB Function

blocks 17-23
truth tables 17-68

MCDC table
condition cases 18-25

Microsoft Excel
2007

deleting ActiveX controls from 7-22
2010

deleting ActiveX controls from 7-23
Microsoft Office Trust Center

enabling ActiveX controls 7-18
Microsoft Word

Index-4

Index

linking to requirements in 2-27
requirements documents, linking to 2-28
troubleshooting ActiveX controls 7-16
using bookmarks for requirements 2-25

MinMax block
model coverage for 15-22

model
synchronizing to DOORS surrogate

module 6-2
Model Advisor

requirements consistency checks 5-4
Model Advisor customizations

creating check callback functions 24-34
defining custom checks 24-23
defining custom folders 25-17
defining custom tasks 25-14
defining process callback functions 24-20
formatting Model Advisor results 24-50
registering custom checks 24-18
registering custom tasks and folders 25-12
slvnvdemo_mdladv example 25-19
workflow overview 23-4 to 23-5

Model block
model coverage for 15-23

Model blocks
coverage for multiple instances 17-11

model coverage 17-40
1-D Lookup Table block 15-19
2-D Lookup Table block 15-19
Abs block 15-5
Add block 15-29
analyzing model execution 14-2
atomic subcharts 17-60
Bias block 15-6
block reduction 18-35
block reduction effect on 14-10
chart as subsystem report section 17-51
colored chart example 17-69
colored Simulink diagram display 17-6
colored Stateflow charts 17-68

Combinatorial Logic block 15-7
condition coverage 14-4 17-46
conditional input branch execution effect

on 14-11
conditions analyzed table 18-24
coverages for truth table function 17-63
cumulative coverage 18-26
cyclomatic complexity 14-3 17-41 18-21
Data Type Conversion block 15-7
Dead Zone block 15-8
decision coverage 14-4 17-42
Decisions analyzed table 18-23
definition 17-40
Direct Lookup Table (n-D) block 15-9
Discrete Filter block 15-10
Discrete FIR Filter block 15-10
Discrete Transfer Fcn block 15-12
Discrete-Time Integrator block 15-10
Dot Product block 15-12
Enabled and Triggered Subsystem

block 15-13
Enabled Subsystem block 15-13
enabling colored Simulink diagram

display 17-6
Fcn block 15-15
filtering model objects from 19-2
For Iterator block 15-15
For Iterator Subsystem block 15-15
for Stateflow charts 17-49
for truth tables 17-63
Gain block 15-16
generate HTML report 17-41
HTML settings 16-10
If Action Subsystem block 15-16
If block 15-16
inlined parameters and 14-10
Interpolation Using Prelookup block 15-17
introduction 14-2
library-linked objects 15-18
Logical Operator block 15-18

Index-5

Index

Lookup Table block report 18-29
lookup table coverage 14-6
Math Function block 15-21
MATLAB Function block 15-22

SimulinkDesign Verifier functions 15-28
17-23

MATLAB functions 18-18
MATLAB functions for code generation 17-22
MCDC analysis 18-25
MCDC coverage 14-4 17-47
MCDC table 18-25
MinMax block 15-22
Model block 15-23
model objects that receive 15-2
Multiport Switch block 15-23
n-D Lookup Table block 15-20
n-dimensional Lookup Table 18-34
PID Controller (2 DOF) block 15-24
PID Controller block 15-24
Product block 15-24
Proof Assumption block 15-25
Proof Objective block 15-25
Rate Limiter block 15-26
Reciprocal Sqrt block 15-29
Relay block 15-26
report 17-40
report for truth table example 17-63
reporting on 17-40
saturate on integer overflow analysis 18-36
saturate on integer overflow coverage 14-6
Saturation block 15-27
Saturation Dynamic block 15-28
settings in dialog 16-2
signal range analysis 18-37
signal range coverage 14-7
signal size coverage 14-7
signal size, for variable dimensions

signals 18-39
Signed Sqrt block 15-29
simulation mode and 17-11

Simulink Design Verifier blocks and
functions 18-40

Simulink Design Verifier coverage 14-8
Simulink Design Verifier functions 18-18
Simulink optimizations and 14-10
specifying reports 17-41
Sqrt block 15-29
state transition tables 17-59
Stateflow chart

SimulinkDesign Verifier functions 17-47
subsystems 18-8
Subtract block 15-29
Sum block 15-29
Sum of Elements block 15-29
Switch block 15-30
SwitchCase Action Subsystem block 15-30
SwitchCase block 15-30
Test Condition block 15-31
Test Objective block 15-31
three-dimensional Lookup Table

example 18-32
triggered models 15-32
Triggered Subsystem block 15-33
Truth Table block 15-34
truth tables 17-63
two-dimensional Lookup Table 18-29
types 14-3
Unary Minus block 15-34
understanding report 18-2
validating models by measuring 14-2
viewing results in the model 17-5
Weighted Sample Time Math block 15-34
While Iterator block 15-35
While Iterator Subsystem block 15-35
workflow 17-2

model coverage example
simcovdemo 17-2

model coverage functions
cvhtml 20-12
cvload 20-14

Index-6

Index

cvsave 20-13
cvsim 20-6
cvtest 20-3

model coverage report
state sections 17-52
Summary 17-50
transition section 17-55

model objects
filtering from coverage 19-4
linking requirements 2-18
linking to requirements from 2-28
linking to requirements from multiple 2-20

2-35 7-7 7-13
Model Verification blocks

block appearance 13-10
disabling for test groups 13-9
enabling for test groups 13-9
icons 13-9
parameter settings 12-3 13-18
using to check signal bounds 12-2

models
highlighting requirements in 4-2
navigating to requirements documents

from 4-5
navigating to, from external documents 8-22
running test cases 17-3

Multiport Switch block
model coverage for 15-23

MuPAD notebooks
linking from models to 2-39

N
n-D Lookup Table block

model coverage for 15-20
navigating

between model and DOORS 7-9
from model to requirements documents 4-5

navigation objects
customizing 7-7 7-14

in requirements 7-2 7-11
notebooks, MuPAD

linking from models to 2-39

O
opening a Signal Builder block 13-5
operating system requirements 1-3
out-of-bounds signals

checking with Check Static Lower Bound
block 12-3 13-17

P
parameters for Model Verification blocks 12-3

13-18
PID Controller (2 DOF) block

model coverage for 15-24
PID Controller block

model coverage for 15-24
Product block

model coverage for 15-24
Proof Assumption block

model coverage for 15-25
Proof Objective block

model coverage for 15-25

R
Rate Limiter block

model coverage for 15-26
Reciprocal Sqrt block

model coverage for 15-29
reference blocks

filtering from coverage recording 19-19
linked to library blocks 5-19
requirements inside 5-21
requirements on 5-20

referenced models
coverage for multiple instances of 17-11

Relay block

Index-7

Index

model coverage for 15-26
reports

model coverage 17-40 18-11
block reduction 18-35
conditions analyzed 18-24
coverage summary 18-11
cumulative coverage 18-26
cyclomatic complexity 18-21
decisions analyzed 18-23
details 18-13
Lookup Table block coverage 18-29
MCDC analysis 18-25
Saturate on integer overflow

analysis 18-36
sections 18-11
Signal range analysis 18-37
signal size 18-39
Simulink Design Verifier blocks and

functions 18-40
subsystems 18-8

model coverage for Stateflow charts 17-49
model coverage HTML options 16-10
understanding model coverage 18-2

requirements
adding navigation objects to 7-2 7-11
adding to test groups 13-21
applying user tags with 4-25
customizing navigation objects for linking

to 7-7 7-14
default reports 2-42
deleting

all links from an object 5-17
from multiple objects 5-18
one at a time 5-17

enabling linking Microsoft® Office
documents 7-11

external storage 2-5
filtering

settings for 4-30
filtering with user tags 4-25

fixing inconsistent links to 5-4
for Model Verification block settings 13-21
highlighting 4-2
identifying inconsistent links to 5-4
in generated code 9-2
in linked libraries 5-19
in subsystems 4-2
inserting navigation objects into 7-6
inside reference blocks 5-21
linking between DOORS and Simulink 7-4
linking from annotations to 2-52
linking from multiple objects 2-20 2-35 7-7

7-13
linking from Signal Builder blocks to 2-53

2-55
linking model objects 2-18
links to library blocks 5-24
moving links from external storage to

model 3-8
moving links from model to external

storage 3-7
navigating to 4-5
navigating to, from System Requirements

block 4-5
on library blocks 5-20
on reference blocks 5-20
reports

creating default 4-7
customizing with Simulink Report

Generator 4-21
customizing with the RMI 4-17
Design Requirements report 4-24
sections 4-8
System Design Description report 4-23

RMI for DOORS 7-2
running consistency checks for 5-4
saving link information in external file 3-5
selection-based linking to 2-10
storing link information outside model 3-4
viewing for test groups 13-22

Index-8

Index

Requirements dialog box
creating requirements using 2-13
Document Index tab 2-15
Requirements tab 2-14

requirements documents
ActiveX controls in 8-23
checking links in 5-11
creating index 8-19
custom link types 8-2

creating 8-11
properties 8-6
registering 8-10

custom links
functions that implement 8-4
properties 8-5
synchronization 8-21
workflows for implementing 8-3

fixing links in 5-11
linking to, from model objects 2-28
opening from Simulink model 2-27
resolving paths to 5-15
supported types 2-6

requirements links 2-4
Requirements Management Interface

default requirements report 2-42
overview 2-3
registering custom requirements

documents 8-10
Requirements Management Interface for DOORS

block type descriptions 6-13
definition of object in DOORS 6-2
from Simulink to DOORS 6-19
hierarchical numbers 6-13
object identifiers 6-13
opening the object in Simulink or

Stateflow 6-20
overview 7-2
saving formal modules 6-17
synchronizing models with DOORS 6-5

synchronizing objects with DOORS formal
module 6-5

viewing requirements 6-18
Requirements pane for Verification

Manager 13-21
Requirements Settings dialog box

Filters tab 4-30
RMI. See Requirements Management Interface

S
saturate on integer overflow coverage

description 14-6
saturate on integer overflow report in model

coverage 18-36
Saturation block

model coverage for 15-27
Saturation Dynamic block

model coverage for 15-28
selection-based linking 2-10

creating a link using 2-11
Signal Builder block

linking to model objects from 2-55
linking to requirements from 2-53
opening 13-5

Signal Builder dialog box
closing Verification Manager Requirements

pane 13-8
signal range analysis report in model

coverage 18-37
signal range coverage

description 14-7
signal size coverage

description 14-7
Signed Sqrt block

model coverage for 15-29
simcovdemo

model coverage example 17-2
simulation mode

model coverage and 17-11

Index-9

Index

Simulink
optimizations

model coverage and 14-10
Simulink blocks

filtering from coverage recording 19-21
Simulink Design Verifier coverage

description 14-8
Simulink Design Verifier functions

model coverage reports 18-18
slvnvdemo_mdladv

Model Advisor customization example 25-19
Sqrt block

model coverage for 15-29
state transition tables

model coverage for 17-59
Stateflow chart

model coverage for Simulink Design Verifier
functions 17-47

Stateflow temporal events
filtering from coverage recording 19-15

Stateflow transitions
filtering from coverage recording 19-13

subsystems
filtering from coverage recording 19-20
highlighting requirements in 4-2

Subtract block
model coverage for 15-29

Sum block
model coverage for 15-29

Sum of Elements block
model coverage for 15-29

Summary of model coverage report 17-50
surrogate modules

characteristics 6-14
creating links to formal modules during

synchronization 6-7
Switch block

model coverage for 15-30
SwitchCase Action Subsystem block

model coverage for 15-30

SwitchCase block
model coverage for 15-30

synchronization
advantages 6-4
creating links between surrogate and formal

modules during 6-7
customizing level of detail 6-11
definition 6-2
resychronizing 6-10 6-12
settings 6-8
Simulink model to DOORS surrogate

module 6-2
synchronizing models with DOORS 6-5
System Design Description report

including requirements in 4-23
system requirements 1-3

IBM Rational DOORS 1-3
MATLAB 1-3
Microsoft Excel 1-3
Microsoft Word 1-3
operating system 1-3
Simulink 1-3
Stateflow 1-3

System Requirements block 4-5

T
temporal events (Stateflow)

filtering from coverage recording 19-15
test case commands 17-3
Test Condition block

model coverage for 15-31
test groups

adding requirements 13-21
disabling Model Verification blocks 13-9
enabling Model Verification blocks 13-9
Model Verification blocks enabled

across 13-13
Test Objective block

model coverage for 15-31

Index-10

Index

transitions (Stateflow)
filtering from coverage recording 19-13

triggered models
model coverage for 15-32

Triggered Subsystem block
model coverage for 15-33

Truth Table block
model coverage for 15-34

truth tables
model coverage 17-63
model coverage example report 17-63
model coverage for 17-63

U
Unary Minus block

model coverage for 15-34
user tags

applying with requirements 4-25
definition 4-25

V
variable-dimension signals

model coverage for 18-39
verification blocks

example of use 12-3 13-17
icons 13-9
requirements for test groups 13-21
stopping simulation 12-3 13-18

Verification Manager
closing Requirements pane 13-8
disabling Model Verification blocks for test

groups 13-9
enabled/disabled block appearance 13-10
enabling Model Verification blocks for test

groups 13-9
flat display 13-8
hierarchical display 13-8
icons for Model Verification blocks 13-9
opening 13-3
Requirements pane 13-21

W
Weighted Sample Time Math block

model coverage for 15-34
While Iterator block

model coverage for 15-35
While Iterator Subsystem block

model coverage for 15-35

Index-11

	toc
	Getting Started
	Product Description
	Key Features

	System Requirements
	Operating System Requirements
	Product Requirements

	Requirements Traceability
	Links Between Models and Requirements
	Overview of the Requirements Management Interface (RMI)
	Requirements Links
	Requirements Link Storage
	Supported Requirements Document Types
	Supported Model Objects for Requirements Linking
	Selection-Based Linking
	Link to Requirements Document Using Selection-Based Linking
	Configure RMI for IBM Rational DOORS or Microsoft ActiveX Naviga
	The Requirements Dialog Box
	Create Requirements Using the Requirements Dialog Box
	Requirements Tab
	Document Index Tab

	The Requirements Settings Dialog Box
	Selection Linking Tab

	Link Model Objects
	Link Objects in the Same Model
	Link Objects in Different Models
	Link from External Applications

	Link Multiple Model Objects to a Requirements Document
	Link Multiple Model Objects to a Requirement Document Using a Si

	Link to Requirements in Microsoft Word Documents
	Create Bookmarks in a Microsoft Word Requirements Document
	Open the Example Model and Associated Requirements Document
	Create a Link from a Model Object to a Microsoft Word Requiremen
	View Link Details

	Link to Requirements in IBM Rational DOORS Databases
	Link to Requirements in Microsoft Excel Workbooks
	Navigate from a Model Object to Requirements in a Microsoft Exce
	Create Requirements Links to the Workbook
	Link Multiple Model Objects to a Microsoft Excel Workbook
	Change Requirements Links

	Link to Requirements in MuPAD Notebooks
	Create Requirements Reports
	Link to Requirements Modeled in Simulink
	Open Example Model
	Verification Subsystems for Power Window Controller Model
	Create RMI Link to a Simulink Object
	Link Simultaneously to Multiple Simulink Objects
	Link to a Group of Simulink Objects
	Create Links for Navigation in Both Directions
	Highlight and Report RMI Links Between Simulink Objects
	Cleanup
	Requirements Linking with Simulink Annotations
	Link Signal Builder Blocks to Requirements Documents
	Link Signal Builder Blocks to Model Objects

	How Is Requirements Link Information Stored?
	External Storage
	Guidelines for External Storage of Requirements Links
	Specify Storage for Requirements Links
	Save Requirements Links in External Storage
	Load Requirements Links from External Storage
	Move Internally Stored Requirements Links to External Storage
	Move Externally Stored Requirements Links to the Model File

	Reviewing Requirements
	Highlight Model Objects with Requirements
	Highlight Model Objects with Requirements Using Model Editor
	Highlight Model Objects with Requirements Using Model Explorer

	Navigate to Requirements from Model
	Navigate from Model Object
	Navigate from System Requirements Block

	Create and Customize Requirements Report
	Create Default Requirements Report
	Table of Contents
	List of Tables
	Model Information
	Documents Summary
	System
	Chart

	Report for Requirements in Model Blocks
	Customize Requirements Report
	Customize Requirements Report Using the RMI Settings
	Customize Requirements Report Using Simulink Report Generator

	Generate Requirements Reports Using Simulink
	System Design Description Report
	Design Requirements Report

	Filter Requirements with User Tags
	User Tags and Requirements Filtering
	Apply a User Tag to a Requirement
	Filter, Highlight, and Report with User Tags
	Apply User Tags During Selection-Based Linking
	Configure Requirements Filtering

	Requirements Links Maintenance
	Validation of Requirements Links
	When to Check Links in a Requirements Document
	How the rmi Function Checks a Requirements Document

	Validate Requirements Links in a Model
	Check Requirements Links with the Model Advisor
	Fix Invalid Requirements Links Detected by the Model Advisor
	Resolve Warning: Identify requirement links that specify invalid
	Resolve Warning: Identify selection-based links having descripti

	Validate Requirements Links in a Requirements Document
	Check Links in a Requirements Document
	When Multiple Objects Have Links to the Same Requirement
	Fix Invalid Links in a Requirements Document

	Document Path Storage
	Relative (Partial) Path Example
	Relative (No) Path Example
	Absolute Path Example

	Delete Requirements Links from Simulink Objects
	Delete a Single Link from a Simulink Object
	Delete All Links from a Simulink Object
	Delete All Links from Multiple Simulink Objects

	Requirements Links for Library Blocks and Reference Blocks
	Introduction to Library Blocks and Reference Blocks
	Library Blocks and Requirements
	Copy Library Blocks with Requirements
	Manage Requirements on Reference Blocks
	Manage Requirements Inside Reference Blocks
	Links from Requirements to Library Blocks

	IBM Rational DOORS Surrogate Module Synchronization
	Synchronization with DOORS Surrogate Modules
	Advantages of Synchronizing Your Model with a Surrogate Module
	Synchronize a Simulink Model to Create a Surrogate Module
	Create Links Between Surrogate Module and Formal Module in a DOO
	Customize DOORS Synchronization
	DOORS Synchronization Settings
	Resynchronize a Model with a Different Surrogate Module
	Customize the Level of Detail in Synchronization
	Resynchronize to Include All Simulink Objects
	Detailed Information About The Surrogate Module You Created

	Resynchronize DOORS Surrogate Module to Reflect Model Changes
	Navigate with the Surrogate Module
	Navigate Between Requirements and the Surrogate Module in the DO
	Navigate Between DOORS Requirements and the Simulink Module via
	Navigate from a Simulink Object to a Requirement via the Surroga
	Navigate from a Requirement to the Model via the Surrogate Modul

	Navigation from Requirements Documents
	IBM Rational DOORS
	Why Add Navigation Objects to DOORS Requirements?
	Configure Requirements Management Interface for DOORS Software
	Before You Begin
	Manually Install Additional Files for DOORS Software

	Enable Linking from DOORS Databases to Simulink Objects
	Insert Navigation Objects into DOORS Requirements
	Insert Navigation Objects to Multiple Simulink Objects

	Customize DOORS Navigation Objects
	Navigate Between DOORS Requirement and Model Object
	Diagnose and Fix DXL Errors

	Microsoft Office
	Why Add Navigation Objects to Microsoft Office Requirements?
	Enable Linking from Microsoft Office Documents to Simulink Objec
	Insert Navigation Objects in Microsoft Office Requirements Docum
	Insert Navigation Object That Links to Multiple Simulink Objects

	Customize Microsoft Office Navigation Objects
	Navigate Between Microsoft Word Requirement and Model
	Navigate with Objects Created Using ActiveX in Microsoft Office
	Save Requirements Documents to Microsoft Word 2007 or 2010 Forma
	Field Codes in Requirements Documents
	ActiveX Control Does Not Link to Model Object
	Delete an ActiveX Control from Microsoft Excel 2007
	Delete an ActiveX Control from Microsoft Excel 2010

	Custom Types of Requirements Documents
	Why Create a Custom Link Type?
	Implement Custom Link Types
	Custom Link Type Functions
	Links and Link Types
	Link Type Properties
	Custom Link Type Registration
	Create a Custom Requirements Link Type
	Create a Document Index

	Custom Link Type Synchronization
	Navigate to Simulink Objects from External Documents
	Provide Unique Object Identifiers
	Use the rmiobjnavigate Function
	Determine the Navigation Command
	Use the ActiveX Navigation Control
	Typical Code Sequence for Establishing Navigation Controls

	Requirements Information in Generated Code
	How Requirements Information Is Included in Generated Code
	Generate Code for Models with Requirements Links

	Model Component Testing
	Overview of Component Verification
	Component Verification
	Component Verification Approaches
	Simulink Verification and Validation Tools for Component Verific

	Basic Approach to Component Verification
	Workflow for Component Verification
	Verify a Component Independently of the Container Model
	Verify a Model Block in the Context of the Container Model

	Functions for Component Verification

	Verifying Generated Code for a Component
	Verify Generated Code for a Component
	About the Example Model
	Prepare the Component for Verification
	Create and Log Test Cases
	Merge Test Case Data
	Record Coverage for Component
	Execute Component in Simulation Mode
	Execute Component in Software-in-the-Loop (SIL) Mode

	Signal Monitoring with Model Verification Blocks
	Using Model Verification Blocks
	Model Verification Blocks and the Verification Manager
	Use Check Static Lower Bound Block to Check for Out-of-Bounds Si
	Linear System Modeling Blocks in Simulink Control Design

	Constructing Simulation Tests Using the Verification Manager
	What Is the Verification Manager?
	Construct Simulation Tests Using the Verification Manager
	View Model Verification Blocks
	Enable and Disable Model Verification Blocks in a Model
	Enable and Disable Model Verification Blocks in a Subsystem
	Use Check Static Lower Bound Block to Check for Out-of-Bounds Si
	Link Test Cases to Requirements Documents Using the Verification

	Model Coverage Analysis
	Model Coverage Definition
	Model Coverage
	Types of Model Coverage
	Cyclomatic Complexity
	Decision Coverage (DC)
	Condition Coverage (CC)
	Modified Condition/Decision Coverage (MCDC)
	Lookup Table Coverage
	Saturate on Integer Overflow Coverage
	Signal Range Coverage
	Signal Size Coverage
	Simulink Design Verifier Coverage

	Simulink Optimizations and Model Coverage
	Inline parameters
	Block reduction
	Conditional input branch execution

	Model Objects That Receive Model Coverage
	Model Objects That Receive Coverage
	Abs
	Bias
	Combinatorial Logic
	Data Type Conversion
	Dead Zone
	Direct Lookup Table (n-D)
	Discrete Filter
	Discrete FIR Filter
	Discrete-Time Integrator
	Discrete Transfer Fcn
	Dot Product
	Enabled Subsystem
	Enabled and Triggered Subsystem
	Fcn
	For Iterator, For Iterator Subsystem
	Gain
	If, If Action Subsystem
	Interpolation Using Prelookup
	Library-Linked Objects
	Logical Operator
	1-D Lookup Table
	2-D Lookup Table
	n-D Lookup Table
	Math Function
	MATLAB Function
	MinMax
	Model
	Multiport Switch
	PID Controller, PID Controller (2 DOF)
	Product
	Proof Assumption
	Proof Objective
	Rate Limiter
	Relay
	Saturation
	Saturation Dynamic
	Simulink Design Verifier Functions in MATLAB Function Blocks
	Sqrt, Signed Sqrt, Reciprocal Sqrt
	Sum, Add, Subtract, Sum of Elements
	Switch
	SwitchCase, SwitchCase Action Subsystem
	Test Condition
	Test Objective
	Triggered Models
	Triggered Subsystem
	Truth Table
	Unary Minus
	Weighted Sample Time Math
	While Iterator, While Iterator Subsystem

	Model Objects That Do Not Receive Coverage

	Setting Model Coverage Options
	Specify Model Coverage Options
	Coverage Tab
	Coverage for this model
	Select Subsystem
	Coverage for referenced models
	Select Models
	Coverage for MATLAB files
	Coverage metrics

	Results Tab
	Save cumulative results in workspace variable
	Save last run in workspace variable
	Increment variable name with each simulation
	Update results on pause
	Display coverage results using model coloring

	Reporting Tab
	Generate HTML report
	Settings
	Cumulative Runs
	Last run
	Additional data to include in report

	Options Tab
	Treat Simulink logic blocks as short-circuited
	Warn when unsupported blocks exist in model
	Force block reduction off

	Filter Tab
	Filename

	Coverage Collection During Simulation
	Model Coverage Collection Workflow
	Create and Run Test Cases
	View Coverage Results in a Model
	Overview of Model Coverage Highlighting
	Enable Coverage Highlighting
	Model Coverage Coloring
	Green: Full Coverage
	Red: Partial Coverage
	Gray: Filtered Coverage

	Coverage Display Window

	Model Coverage for Multiple Instances of a Referenced Model
	About Coverage for Model Blocks
	Record Coverage for Multiple Instances of a Referenced Model
	Record Coverage for the First Instance of the Referenced Model
	Record Coverage for the Second Instance of the Referenced Model

	Model Coverage for MATLAB Functions
	About Model Coverage for MATLAB Functions
	Types of Model Coverage for MATLAB Functions
	Decision Coverage
	Condition and MCDC Coverage
	Simulink Design Verifier Coverage

	How to Collect Coverage for MATLAB Functions
	Examples: Model Coverage for MATLAB Functions
	Model Coverage for MATLAB Function Blocks
	Model Coverage for MATLAB Functions in an External File
	Model Coverage for Simulink Design Verifier MATLAB Functions

	Model Coverage for Stateflow Charts
	How Model Coverage Reports Work for Stateflow Charts
	Specify Coverage Report Settings
	Cyclomatic Complexity
	Decision Coverage
	Chart as a Triggered Simulink Block Decision
	Chart Containing Exclusive OR Substates Decision
	Superstate Containing Exclusive OR Substates Decision
	State with On Event_Name Action Statement Decision
	Conditional Transition Decision

	Condition Coverage
	MCDC Coverage
	Simulink Design Verifier Coverage
	Model Coverage Reports for Stateflow Charts
	Summary Report Section
	Subsystem and Chart Details Report Sections
	State Details Report Section
	Transition Details Report Section

	Model Coverage for Stateflow State Transition Tables
	Model Coverage for Stateflow Atomic Subcharts
	Model Coverage for Stateflow Truth Tables
	Types of Coverage in Stateflow Truth Tables
	Analyze Coverage in Stateflow Truth Tables

	Colored Stateflow Chart Coverage Display
	Display Model Coverage with Model Coloring

	Results Review
	Types of Coverage Reports
	Model Summary Report
	Model Reference Coverage Report
	External MATLAB File Coverage Report
	Subsystem Coverage Report

	Top-Level Model Coverage Report
	Coverage Summary
	Details
	Filtered Objects
	Model Details
	Subsystem Details
	Block Details
	Chart Details
	Coverage Details for MATLAB Functions and Simulink Design Verifi

	Cyclomatic Complexity
	Decisions Analyzed
	Conditions Analyzed
	MCDC Analysis
	Cumulative Coverage
	N-Dimensional Lookup Table
	Block Reduction
	Saturate on Integer Overflow Analysis
	Signal Range Analysis
	Signal Size Coverage for Variable-Dimension Signals
	Simulink Design Verifier Coverage

	Excluding Model Objects From Coverage
	Coverage Filtering
	What Is Coverage Filtering?
	When to Use Coverage Filtering

	Coverage Filter Rules and Files
	What Is a Coverage Filter Rule?
	What Is a Coverage Filter File?

	Model Objects That You Can Exclude From Coverage
	Create, Edit, and View Coverage Filter Rules for a Simulink Mode
	Create and Edit Coverage Filter Rules
	Create a Coverage Filter Rule
	Add Rationale to a Coverage Filter Rule
	Create Additional Coverage Filter Rules

	Save Coverage Filter to File
	Attach Coverage Filter File to Model
	View Coverage Filter Rules in Your Model
	Remove Coverage Filter Rules
	Remove a Coverage Filter Rule
	Remove Multiple Coverage Filter Rules

	Manage Coverage Filter Rules Using the Coverage Filter Viewer
	Filter Model Objects to Refine Coverage Results
	About the Example Model
	Simulate Example Model and Review Coverage
	Filter a Stateflow Transition
	Filter a Stateflow Event
	Filter Library Reference Blocks
	Filter a Subsystem
	Filter a Specific Block

	Automating Model Coverage Tasks
	Commands for Automating Model Coverage Tasks
	Create Tests with cvtest
	Run Tests with cvsim
	Retrieve Coverage Details from Results
	Obtain Cumulative Coverage for Reusable Subsystems and Stateflow
	Create HTML Reports with cvhtml
	Save Test Runs to a File with cvsave
	Load Stored Coverage Test Results with cvload
	cvload Special Considerations

	Use Coverage Commands in a Script

	Checking Systems with the Model Advisor
	Checking Systems Interactively
	About Checking Systems Interactively
	Limit the Scope of Model Advisor Analysis
	What Is a Model Advisor Exclusion?
	Model Advisor Exclusion Files
	Create Model Advisor Exclusions
	Review Model Advisor Exclusions
	Manage Exclusions
	Save Exclusions To a File
	Load an Exclusion File
	Detach an Exclusion File
	Remove an Exclusion
	Add a Rational to an Exclusion

	Limit Scope of Model Advisor Analysis By Excluding Gain and Outp

	Check Systems Programmatically
	Overview
	Workflow for Checking Systems Programmatically
	Finding Check IDs
	Create a Function for Checking Multiple Systems
	Check Multiple Systems in Parallel
	Create a Function for Checking Multiple Systems in Parallel
	Archive and View Results
	Archive Results
	View Results in Command Window
	View Results in Model Advisor Command-Line Summary Report
	View Results in Model Advisor GUI
	View Model Advisor Report

	Archive and View Model Advisor Run Results

	Customizing the Model Advisor
	Overview of Customizing the Model Advisor
	Model Advisor Customization
	Create Custom Configurations
	Create Configurations by Organizing Checks and Folders Workflow
	Create Procedural-Based Configurations

	Requirements for Customizing the Model Advisor

	Authoring Custom Checks
	Author Checks Workflow
	Customization File Overview
	Quick Start Examples
	Add Customized Check to By Product Folder
	See Also

	Create Customized Pass/Fail Check
	See Also

	Create Customized Pass/Fail Check with Fix Action
	See Also

	Register Checks and Process Callbacks
	Create sl_customization Function
	Register Checks and Process Callbacks
	Register Custom Checks and Process Callbacks

	Define Startup and Post-Execution Actions Using Process Callback
	Process Callback Function Arguments
	Process Callback Function

	Define Custom Checks
	About Custom Checks
	Contents of Check Definitions
	Display and Enable Checks
	Define Where Custom Checks Appear
	Check Definition Function
	Define Check Input Parameters
	Specify Input Parameter Layout
	Input Parameter Definition

	Define Model Advisor Result Explorer Views
	 List View Definition

	Define Check Actions
	 Action Definition

	Create Callback Functions and Results
	About Callback Functions
	Common Utilities for Authoring Checks
	Simple Check Callback Function
	 Informational Check Callback Function
	 Basic Check with Pass/Fail Status
	 Check With Subchecks and Actions

	Detailed Check Callback Function
	Check Callback Function with Hyperlinked Results
	Action Callback Function
	Action Callback Function

	Format Model Advisor Results
	Overview of Displaying Results
	Format Model Advisor Results
	Format Text
	Format Lists
	Format Tables
	Format Paragraphs
	Formatted Output

	Exclude Blocks From Custom Checks

	Create Custom Configurations by Organizing Checks and Folders
	Create Custom Configurations Basics
	About Custom Configurations
	Create Custom Configurations Workflow
	Using the Model Advisor Configuration Editor Versus Customizatio

	Organize Checks and Folders Using the Model Advisor Configuratio
	Overview of the Model Advisor Configuration Editor
	Start the Model Advisor Configuration Editor
	Organize Checks and Folders Using the Model Advisor Configuratio

	Organize Checks and Folders Within a Customization File
	Customization File Overview
	Register Tasks and Folders
	Create sl_customization Function
	Register Tasks and Folders
	Register Custom Tasks and Folders

	Define Custom Tasks
	Add Check to Custom or Multiple Folders Using Tasks
	Create Custom Tasks Using MathWorks Checks
	Display and Enable Tasks
	Define Where Tasks Appear
	Task Definition Function

	Define Custom Folders
	About Custom Folders
	Add Custom Folders
	Define Where Custom Folders Appear
	Group Definition

	Customization Example

	Verify and Use Custom Configurations
	Update the Environment to Include Your sl_customization File
	Verify Custom Configurations

	Create Procedural-Based Model Advisor Configurations
	Overview of Procedural-Based Model Advisor Configurations
	Create Procedural-Based Configurations

	Create Procedures
	What Is a Procedure?
	Create Procedures Using the Procedures API
	Define Procedures
	Add Subprocedures and Tasks to Procedures
	Define Where Procedures Appear
	Procedure Definition

	Create a Procedural-Based Configuration

	Deploy Custom Configurations
	Overview of Deploying Custom Configurations
	About Deploying Custom Configurations
	Deploying Custom Configurations Workflow

	How to Deploy Custom Configurations
	Manually Load and Set the Default Configuration
	Automatically Load and Set the Default Configuration

	Index

